Isomorphisms of Direct Products of Cyclic Groups of Prime Power Order

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Kazuhisa Nakasho
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this paper we formalized some theorems concerning the cyclic groups of prime power order. We formalize that every commutative cyclic group of prime power order is isomorphic to a direct product of family of cyclic groups \[1\], \[18\].

MSC: 13D99 06A75 03B35

Keywords: formalization of the commutative cyclic group; prime power set

The notation and terminology used in this paper have been introduced in the following articles: \[2\], \[20\], \[6\], \[11\], \[7\], \[18\], \[24\], \[18\], \[25\], \[26\], \[27\], \[28\], \[13\], \[23\], \[19\], \[5\], \[12\], \[30\], \[31\], \[14\], \[29\], and \[10\].

1. **Basic Properties of Cyclic Groups of Prime Power Order**

Let \(G \) be a finite group. The functor \(\text{Ordset}(G) \) yielding a subset of \(\mathbb{N} \) is defined by the term

(Def. 1) the set of all \(\text{ord}(a) \) where \(a \) is an element of \(G \).

One can check that \(\text{Ordset}(G) \) is finite and non empty.

Now we state the propositions:

(1) Let us consider a finite group \(G \). Then there exists an element \(g \) of \(G \) such that \(\text{ord}(g) = \sup \text{Ordset}(G) \).

\[1\] This work was supported by JSPS KAKENHI 22300285.
(2) Let us consider a strict group G and a strict normal subgroup N of G. If G is commutative, then G/N is commutative.

(3) Let us consider a finite group G and elements a, b of G. Then $b \in \text{gr}(\{a\})$ if and only if there exists an element p of \mathbb{N} such that $b = a^p$.

(4) Let us consider a finite group G, an element a of G, and elements n, p, s of \mathbb{N}. Suppose

(i) $\text{gr}(\{a\}) = n$, and

(ii) $n = p \cdot s$.

Then $\text{ord}(a^p) = s$.

Let us consider an element k of \mathbb{N}, a finite group G, and an element a of G. Now we state the propositions:

(5) $\text{gr}(\{a\}) = \text{gr}(\{a^k\})$ if and only if $\text{gcd}(k, \text{ord}(a)) = 1$.

(6) If $\text{gcd}(k, \text{ord}(a)) = 1$, then $\text{ord}(a) = \text{ord}(a^k)$.

(7) $\text{ord}(a) | k \cdot \text{ord}(a^k)$.

Now we state the proposition:

(8) Let us consider a group G and elements a, b of G. Suppose $b \in \text{gr}(\{a\})$. Then $\text{gr}(\{b\})$ is a strict subgroup of $\text{gr}(\{a\})$.

Let G be a strict commutative group and x be an element of SubGr_G. The functor $\text{NormSp}_\mathbb{R}(x)$ yielding a normal strict subgroup of G is defined by the term

(Def. 2) x.

Now we state the propositions:

(9) Let us consider groups G, H, a subgroup K of H, and a homomorphism f from G to H. Then there exists a strict subgroup J of G such that the carrier of $J = f^{-1}(\text{the carrier of } K)$. PROOF: Reconsider $I_3 = f^{-1}(\text{the carrier of } K)$ as a non empty subset of the carrier of G. For every elements g_1, g_2 of G such that $g_1, g_2 \in I_3$ holds $g_1 \cdot g_2 \in I_3$ by [8 (38)], [25 (50)]. For every element g of G such that $g \in I_3$ holds $g^{-1} \in I_3$ by [8 (38)], [25 (51)], [28 (32)]. Consider J being a strict subgroup of G such that the carrier of $J = f^{-1}(\text{the carrier of } K)$. □

(10) Let us consider a natural number p, a finite group G, and elements x, d of G. Suppose

(i) $\text{ord}(d) = p$, and

(ii) p is prime, and

(iii) $x \in \text{gr}(\{d\})$.

Then

(iv) $x = 1_G$, or

(v) $\text{gr}(\{x\}) = \text{gr}(\{d\})$.
The theorem is a consequence of (8). **Proof:** If $\text{gr}(\{x\}) = \{1\}_{\text{gr}(\{d\})}$, then $x = 1_G$ by [109 (2)], [20 (44)]. □

(11) Let us consider a group G and normal subgroups H, K of G. Suppose $(\text{the carrier of } H) \cap (\text{the carrier of } K) = \{1_G\}$. Then (the canonical homomorphism onto cosets of H)\(\lceil(\text{the carrier of } K)\rceil\) is one-to-one. **Proof:** Set $f = \text{the canonical homomorphism onto cosets of } H$. For every elements x_1, x_2 such that x_1, $x_2 \in \text{dom } g$ and $g(x_1) = g(x_2)$ holds $x_1 = x_2$ by [30 (57)], [7 (49)], [20 (46), (103), (51)]. □

Let us consider finite commutative groups G, F, an element a of G, and a homomorphism f from G to F. Now we state the propositions:

(12) The carrier of $\text{gr}(\{f(a)\}) = f^\circ \text{the carrier of } \text{gr}(\{a\})$.

(13) $\text{ord}(f(a)) \leq \text{ord}(a)$.

(14) If f is one-to-one, then $\text{ord}(f(a)) = \text{ord}(a)$.

Now we state the propositions:

(15) Let us consider groups G, F, a subgroup H of G, and a homomorphism f from G to F. Suppose $f|\text{the carrier of } H$ as a function from the carrier of H into the carrier of F. For every elements a, b of H, $g(a \cdot b) = g(a) \cdot g(b)$ by [25 (40)], [7 (49)], [20 (43)]. □

(16) Let us consider finite commutative groups G, F, an element a of G, and a homomorphism f from G to F. Suppose $f|\text{the carrier of } \text{gr}(\{a\})$ is one-to-one. Then $\text{ord}(f(a)) = \text{ord}(a)$. The theorem is a consequence of (15) and (14).

(17) Let us consider a finite commutative group G, a prime number p, a natural number n, and an element a of G. Suppose

(i) $\overline{G} = p^n$, and

(ii) $a \neq 1_G$.

Then there exists a natural number n such that $\text{ord}(a) = p^{n+1}$.

Let us consider a prime number p and natural numbers j, m, k. If $m = p^k$ and $p \nmid j$, then $\gcd(j, m) = 1$.

2. **Isomorphism of Cyclic Groups of Prime Power Order**

Let us consider a strict finite commutative group G, a prime number p, and a natural number m. Now we state the propositions:

(19) Suppose $\overline{G} = p^m$. Then there exists a normal strict subgroup K of G and there exist natural numbers n, k and there exists an element g of G such that $\text{ord}(g) = \sup \text{Ordset}(G)$ and K is finite and commutative and
(the carrier of K) \cap (the carrier of $\text{gr} \{g\}) = \{1_G\}$ and for every element x of G, there exist elements b_1, a_1 of G such that $b_1 \in K$ and $a_1 \in \text{gr} \{g\}$ and $x = b_1 \cdot a_1$ and $\text{ord} (g) = p^n$ and $k = m - n$ and $n \leq m$ and $\overline{K} = p^k$ and there exists a homomorphism F from $\prod (K, \text{gr} \{g\})$ to G such that F is bijective and for every elements a, b of G such that $a \in K$ and $b \in \text{gr} \{g\}$ holds $F((a, b)) = a \cdot b$.

(20) Suppose $\overline{G} = p^m$. Then there exists a non zero natural number k and there exists a k-element finite sequence a of elements of G and there exists a k-element finite sequence I_2 of elements of N and there exists an associative group-like commutative multiplicative magma family F of Seg k and there exists a homomorphism H_1 from $\prod F$ to G such that for every natural number i such that $i \in \text{Seg} k$ there exists an element a_2 of G such that $a_2 = a(i)$ and $F(i) = \text{gr} \{a_2\}$ and $\text{ord} (a_2) = p^{I_2(i)}$ and for every natural number i such that $1 \leq i \leq k - 1$ holds $I_2(i) \leq I_2(i + 1)$ and for every elements p, q of Seg k such that $p \neq q$ holds $(\text{the carrier of } F(p)) \cap (\text{the carrier of } F(q)) = \{1_G\}$ and H_1 is bijective and for every $(\text{the carrier of } G)$-valued total Seg k-defined function x such that for every element p of Seg k, $x(p) \in F(p)$ holds $x \in \prod F$ and $H_1(x) = \prod x$.

(21) Suppose $\overline{G} = p^m$. Then there exists a non zero natural number k and there exists a k-element finite sequence a of elements of G and there exists a k-element finite sequence I_2 of elements of N and there exists an associative group-like commutative multiplicative magma family F of Seg k such that for every natural number i such that $i \in \text{Seg} k$ there exists an element a_2 of G such that $a_2 = a(i)$ and $F(i) = \text{gr} \{a_2\}$ and $\text{ord} (a_2) = p^{I_2(i)}$ and for every natural number i such that $1 \leq i \leq k - 1$ holds $I_2(i) \leq I_2(i + 1)$ and for every elements p, q of Seg k such that $p \neq q$ holds $(\text{the carrier of } F(p)) \cap (\text{the carrier of } F(q)) = \{1_G\}$ and for every element y of G, there exists a $(\text{the carrier of } G)$-valued total Seg k-defined function x such that for every element p of Seg k, $x(p) \in F(p)$ and $y = \prod x$ and for every $(\text{the carrier of } G)$-valued total Seg k-defined functions x_1, x_2 such that for every element p of Seg k, $x_1(p) \in F(p)$ and for every element p of Seg k, $x_2(p) \in F(p)$ and $\prod x_1 = \prod x_2$ holds $x_1 = x_2$.

References

Received October 7, 2013