
Supporting Proofs  
for 

A Macro Tool for Calculating Energy Consumption 
Changes from New Technologies 

 
 

The proofs of these Appendices are developed using only 3 factors—capital, labor 
and fuel.  They are also developed considering only one technology improvement 
factor, iτ , instead of the technology vector .  For simplicity, we suppress the 
subscript i and use the notation

τ
τ . 

The extension of these proofs to n factors and an n-dimensional 
technology vector is very direct, even obvious.  However, these simplifications 
make the proofs less notation-intensive and easier to follow.   
 
General Approach 
 
The first Proofs Appendix establishes that applying Shephard’s Lemma to obtain 
the correct expression for F

τ
∂

∂ when K, L, and Fp  are fixed requires a form of 

Shephard’s Lemma that is explicit inτ , ( )F τ , ( )Kp τ , and ( )Lp τ .   
The second Proofs Appendix establishes that the assumption of fixed real 

prices for fuel and the other complementary factors leads to a simplification of 
Shephard’s Lemma.  This form of Shephard’s Lemma is used in the Appendix A: 
Tool Specification of the main article, equation (A-3).   

The third Proofs Appendix establishes that the odd-looking optimization 
that mixes both cost and production functions in the same problem is actually a 
correct approach, and is the result of a kind of duality.  (That optimization is 
required to generate partials of Kp and Lp with respect to τ  and leads, via the 
Implicit Function Theorem, to equations (A-9) of Appendix A of the main 
article.) 

The fourth Proofs Appendix shows the formal equivalence between the 
functional forms for engineering technology used in the production function and 
those used in the cost function. 
 
Proofs Appendix D1.  The Application of Shephard’s Lemma with 
Changing Tau 
 
STANDARD PRIMAL SIDE SETUP 
 
First consider the problem from the primal side: 



 0 0 0
0, ,

( , , , ) K L FK L F
Max P Y K L F p K p L p Fπ τ= ⋅ − − −  (D-1) 

and suppose the solution is ,  and . 0K 0L 0F
For a CRS production function, P c= , where is the price of output used 

in standard formulations and is the unit cost function.1  Thus, it will also be true 
that

P
c

0 0 0
0 ( , , , )K L FP c c p p p 0τ= = , and that total cost 0 0C c Y= .   

With fixed  and , this problem can be restated as: 0K 0L
 0 0 0

0 0 0 0 0 0( , , , ) K L FF
Max c Y K L F p K p L p Fπ τ= ⋅ − − −  (D-2) 

The first order conditions associated with (D-2) will ensure the following 
relationships hold at : 0F F=
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Now we ask what happens to when F 0 1τ τ→  with  and fixed and 
real fuel price fixed at

K L
0

0Fp c . 
Under these conditions, will change to , which we can solve for from 

the fuel first-order condition in (D-3): 
0F 1F
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This can be done because Y by assumption is a known production function over 
the domain of the inputs , , , andK L F τ .  Then we can calculate the partial we 
ultimately need as 
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1 0

1 0

lim F FF
τ ττ τ τ→

⎛ ⎞−∂
= ⎜ ⎟∂ −⎝ ⎠

    (D-5) 

Alternatively, equation (D-4) can be solved analytically (or from the Implicit 
Function Theorem) for as a function ofF τ .  In any case we can derive the 
needed elasticity of with respect to F τ and we are done. 
 (Note that, because of fixed real fuel price in (D-4), we so far have not had 
to deal with the possibility that the unit cost function will change with 
changingτ .) 
 

                                                 
1 See, for example, Mas-Colell, Whinston, and Green (1995), page 141. 



DUAL SIDE SETUP 
 
However, we want to derive this relationship, as a function ofF τ , from the dual 
side.  

First note that the solution to the primal problem (D-2), , will be a 
solution to the corresponding dual problem: 
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We then proceed by noting that the other first-order conditions in  (D-3) 
change when 0 1τ τ→  and :   0 1F F→
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In particular, the only way for these two conditions to hold is if Kp and 

Lp change, since in general:2 
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and same holds for the price of labor.  This therefore results in new first-order 
conditions:  
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But notice that this reveals the solution to a new primal-side problem.  
That is, if Y is well-behaved in second order as usual, (D-4) and  (D-9) are both 
necessary and sufficient conditions, and it will be true that 1F  is the unique 
solution to the profit maximization problem 
 1 1 1

1 0 0 1 0 0( , , , ) K L FF
Max c Y K L F p K p L p Fπ τ= ⋅ − − −  (D-10) 

                                                 
2 Note that while the real fuel price is unchanged at 0

0Fp c , the nominal price will change to 

some 1
Fp  as changes to some . 0c 1c



just as  is the unique solution to the profit maximization problem (D-1), above. 0F
We then proceed by noting that (D-10) has a dual in the cost function 

space, just as does (D-1).  These can be used to set up Shephard’s Lemma as the 
means to derive an expression for F

τ
∂

∂ using only cost function parameters. 

 The cost dual equivalent of (D-2) is (D-6), whose solution is . 0F
 The cost dual equivalent of (D-10) is: 

 

1 1 1
0 0

0 0 1 1

1 0 0 1

. . ( , , , )

( , , , )

K L FF

1

MinC p K p L p F

s t Y K L F Y

where Y Y K L F

τ

τ

= + +

=

=

 (D-11) 

The solution to (D-11) is .  Note that both 1F Kp and (for this same production 
function, and therefore same cost function) are therefore functions of

Lp
τ . 

  [Note that by comparing (D-10) and (D-2) it is apparent that  is a 
function of 

F
τ , as are Kp , , and .  Thus, the general form of the 

optimization problem that generates 
Lp Fp

( )F τ  is: 
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 We are now ready for the unifying theorem: 
 
THEOREM RELATING AND F τ VIA SHEPHARD’S LEMMA 
 
Theorem 1:  Given a well-behaved CRS production function ( , , , )Y K L F τ and 
its dual unit cost function ( , , , )K L Fc p p p τ , and given that for changes in τ we 

hold fixed , , and 0K K= 0L L=
0

0

F Fp p
P = c , the partial derivative of with 

respect to 

F

τ will be of the form: 

 0 0
( ( ), ( ), ( ), )( , , ( ), ) K L F

F

F c p pY K L F
p

pτ τ τ ττ τ
τ τ

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

 (D-13) 

 
Proof:  First note that for a CRS function, Shephard’s Lemma will be of the form 
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 Shephard’s Lemma will hold for both dual problems, (D-6) and (D-11).  
Applying (D-14) to (D-6), we have that 

 ( ) ( )0 0 0
0 0 0 0 0 0

( ), ( ), ( ),
, , , K L F

F

c p p p
F Y K L F

p
0τ τ τ τ

τ
∂

=
∂

 (D-15) 

Applying (D-14) to (D-11), we have that 
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From these two equations, we see that  
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and equation (D-13) above follows immediately. 
 
Proofs Appendix D2. Simplified form of Shephard’s Lemma 
 
Fortunately, the requirement that fuel price remain fixed in real terms allows a 
useful simplification.  First consider the generalized primal problem that is 
variable in τ , from equation (D-12) in Appendix D1: 
 0 0( ) ( ( ), ( ), ( ), ) ( , , , )K L FF

Max c p p p Y K L Fπ τ τ τ τ τ= ⋅ τ   

 0 0( ) ( ) ( )K L Fp K p L p Fτ τ τ− − −  (D-18) 
The corresponding first order conditions are: 
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And the corresponding form of the dual problem is: 
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 But we can recast (D-19) using the assumption of fixed real fuel price: 
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Then we can substitute (D-21) into (D-20) to give: 
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This will deliver the same solution for ( )F τ as: 
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since for any τ  it differs only by a multiplicative constant in the objective 
function.  Furthermore, since we know that for 0τ τ= , 0( )F Fτ =  is a solution for 
both (D-22) and (D-23), it must be that 0 0ˆ ( ) ( )K Kp pτ τ=  and 0 0ˆ ( ) ( )L Lp pτ τ= .  
Therefore, the optimization problem (D-23) with ( )ip τ  replacing ˆ ( )ip τ can be 
substituted for the optimization problem (D-22), and accordingly Shephard’s 
Lemma (derived by applying the Implicit Function theorem to the cost 
minimization problem) can be restated as: 
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This is the form used in the article.   
 



Proofs Appendix D3. Mixed Cost and Production Function 
Optimization 
 
EQUIVALENCE OF THE STANDARD PRIMAL PROFIT MAXIMIZING 
FORMULATION AND THE COST-CONSTRAINED FORMULATION USED IN 
THE CECANT ALGORITHM  
 
Theorem 2: Given a CRS production function ( , , , )Y K L F τ and its dual unit 
cost function ( , , ,K L Fc p p p )τ , the following optimization problems are dual to 
each other: 
 
Standard Formulation 
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−
Cost-constrained Formulation 
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where duality means that if the solution to (D-25) is , , , then the solution 
to (D-26) must be 
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0
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Lp , , (and 0F 1 2π π= ). 
 
Proof:  Begin by looking at the standard cost-function dual to (D-25).  Since we 
have assumed CRS, the cost function defined at the point  is 0 0 0
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 Now observe that (D-26) can be rewritten as: 
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We need to show that the solution to (D-29) is 0
Kp , 0

Lp , .   0F



 
 Proof is by contradiction.  Suppose there exists a solution to (D-29) that is 
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 We see from the first-order conditions on the Lagrangian for that  F
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 By our assumption, this will occur at 1F F F0= ≠ .  But this contradicts the 
identical first-order condition for from (D-25) (recall that the function Y in 
(D-25) is the same as in (D-26)), where 

F
Y
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Therefore, . 1 0F F=
This being true, we can rewrite (D-29) as 
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According to our supposition, there is a solution to (D-32) that is 1
Kp , 1

Lp .  Then 
it must be true that  
 1 1 0 0

0 0 0K L K L 0p K p L p K p L+ < +  (D-33) 
or 
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0 0 0 0 0K L F K L F 0p K p L p F p K p L p F+ + < + +  (D-34) 
Note from the constraint of (D-32) that it must also be true that 
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meaning that from (D-28) we can conclude that 
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We are left with two possibilities:  In the first possibility, the solution to 
the right-hand-side of (D-38) is 0K K= , and 0L L= , just as it is for the left-hand 



side.  However, this contradicts the equality in (D-38), given the inequality in 
(D-34). 
 In the second possibility, the solution to the right-hand-side of (D-38) is 

, , where either or 1K 1L 1 0K K≠ 1L L0≠  or both.  The equality in (D-38) means 
we would then have 
 0 0 0 1 1 0

0 0 0 1 1K L F K L F 0p K p L p F p K p L p F+ + = + +  (D-39) 
However, the right-hand-side of (D-39) cannot be the minimum found on the 
right-hand-side of (D-38), since from (D-34) we can find a and  that will 
deliver a lower value. 

0K 0L

 We are left with a contradiction.  Accordingly, our original assumption is 
wrong, and it must be true that 1 0

K Kp p= , 1
L

0
Lp p= , and 1F F0= .  Therefore the 

solution to (D-26) is 0
Kp , 0

Lp , . 0F
 
CORRECTNESS OF USING THE COST-CONSTRAINED FORMULATION TO 
DETERMINE THE PARTIALS OF Kp AND Lp   
 
Theorem 3: Given a CRS production function ( , , , )Y K L F τ  and its dual unit 
cost function ( , , ,K L Fc p p p )τ , and given that for changes in τ we hold fixed 

, , and 0K K= 0L L=
0

0( , , , )
F

K L F

p
c p p p cτ = Fp , the profit-maximizing partial 

derivatives of Kp  and Lp with respect to τ can be determined by applying the 
Implicit Function Theorem to the following cost-constrained formulation of the 
profit maximization problem: 
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Proof:  First note that the solution of the Lagrangian for the above problem yields 
the following system of equations: 
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where µ  is the Lagrange multiplier. 
 The Implicit Function Theorem allows us to ask how some endogenous 
variables change (in our case, Kp and Lp ) when an exogenous variable is changed 

(in our case, τ ).  In particular, it allows us to derive the partials Kp
τ

∂
∂ and 

Lp
τ

∂
∂ .  What remains is to show that (D-40) correctly replicates the solutions of 

the primal when τ changes. 
Recall what happens when we take the standard primal profit-maximizing 

problem (with  and fixed and real energy price fixed at K L 0
0Fp c ), namely 
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and change 0 1τ τ→ .  Then we have a new primal problem 
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The solution to (D-42) is , , ; the solution to (D-43) is , , 
.  But from Theorem 2, we know that each of these has a cost-constrained dual.  

The cost-constrained dual to (D-42) is 
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whose solution is 0
Kp , 0

Lp , .  Similarly, the cost-constrained dual to (D-43) is 0F
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whose solution is 1
Kp , 1

Lp , .  Recall also that 1F 1
Kp  and 1

Lp  are those prices that 
satisfy the first-order conditions (D-9) on the primal problem (D-43).   
 Therefore, the formulation in (D-40) gives the correct description of how 

1
Kp  and 1

Lp behave when τ changes.  Accordingly, the Implicit Function Theorem 
that operates on the system of equations derived from (D-40) will generate the 
correct partials. 
 
Proofs Appendix D4. Technology Vector Transformation to Cost 
Form 
PROOF THAT i

i

p
τ IS THE CORRECT FORM FOR ENGINERRING 

TECHNICAL CHANGE IN THE COST FUNCTION 
 



Other researchers have told us this is a well-known result.  But we have been 
unable to find its source.  For the sake of completeness, and with apologies to the 
researcher who first proved it, we offer one version, at least, of the proof for this 
Theorem. 

Lemma #1: Given a CRS production function ( )Y f= x , the partial 
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Proof:  Given that Y is CRS, 
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These partials will thus be of a form such that ( )ig x ( )( )ig x g kx= i , where the 
value of makes no difference to the value of .  Leaving aside the trivial case 
where , this can only be true if, for every appearance of in , it 
appears in ratio with a function , where the ratio must satisfy 

k g
g constant= ikx g

( )ih kx
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This condition must hold for each i .  This can occur only if h is a function of 
each ix , and so it has form h x .  Since (D-46) must hold for all 

, and since these  multiply all factors simultaneously, this gives us the more 

explicit condition 
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1 2 1 2( , , , , , ) ( , , , , ,i x )i n nh kx kx kx kx k h x x x= ⋅ .  But this is 
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Lemma #2: The function in Lemma #1 is the production function 
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( )h x

( )Y f= x



 
Proof:  Let be the price of output Y  (i.e., the unit cost).  Then the first order 
condition from the producers’ maximization problem gives 
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From Lemma #1, we then have that  
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Solving this for ix yields 

 
1

( )
i

i

hx
pg
P

−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

x

 
Proceeding as if we are deriving the dual unit cost function, we substitute this 
result back into the production function, so that 
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But since f is CRS, we can write this as 
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This implies that  
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But we know that for a CRS function, ( , ) ( )C Y Y c= ⋅p p

)h= =x x

,3 so the unit cost function 
is independent of Y .  The only way for both this to be true and for (D-47) to hold 
is for Y f . ( ) (
 
Theorem 4: Given a CRS production function ( , )Y f= τ x  where 

1 1 2 2( , , , n nY f x x x )τ τ τ=  so that is the vector of engineering efficiency τ

                                                 
3 See, for instance, Diewert (1972). 



parameters, the corresponding dual unit production function is of the form 
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Proof:  Letting ˆi i ix xτ= , we have from the first order condition that  
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But from Lemma #1 and Lemma #2, we can write 
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so that 
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Substituting this back in the production function gives  
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But since Y is CRS, this becomes 
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The CRS assumption means any expression common to all terms can come out 
front as a multiplier of f .  So solving for P gives 
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Since is the unit cost, c , we have P
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