Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 27, 2013

Industrial Methanol from Syngas: Kinetic Study and Process Simulation

  • Raquel De María , Ismael Díaz EMAIL logo , Manuel Rodríguez and Adrián Sáiz

Abstract

In this study, a detailed rigorous kinetic model is proposed for the industrial production of methanol taking into account changes in total mole flowrate. The kinetic model proposed is compared with the one proposed in literature (Rezaie et al., Chem Eng Process Process Intensification 2005;44:911–21), showing significant differences in terms of compositions and total mole flow. A complete simulation of the methanol production process is developed with a commercial software. The rigorous reactor model is integrated in the simulation using the CAPE OPEN standard. Flowsheet simulation is carried out, and results show small differences with those found in previous studies (Luyben, Ind Eng Chem Res 2010;49:6150–63).

Acknowledgements

The authors gratefully acknowledge Jasper van Baten comments and support when dealing with the implementation of Matlab model into process simulation software.

Nomenclature

εBBed porosity
CtTotal mole concentration
yisMolar fraction of i component in the solid phase
kgiMass-transfer component of i component
yiMolar fraction of i component in the gas phase
ηEffectiveness factor
riReaction rate of i component
ρBBed density
aCatalytic activity
CpsHeat capacity of solid phase
avCatalyst surface area
hfHeat-transfer coefficient
TsTemperature of the solid phase
TTemperature of the gas phase
ΔHfiEnthalpy of formation of component i
FtTotal mole flowrate
AcCross-section area of each tube
DiTube diameter
UshellOverall heat-transfer coefficient
TshellShell side temperature
LLength of reactor
ReReynolds number
DpParticle diameter
ugGas velocity
ρgGas density
WtTotal mass flow
wiMass fraction of component i
MiMolecular weight of component i
kiReaction rate constant for the ith rate equation
KiAdsorption equilibrium constant for component i
KpiEquilibrium constant based on partial pressure for component i
NNumber of components
PTotal pressure
SciSchmidt number for component i
hiTube side individual heat-transfer coefficient
hoShell side individual heat-transfer coefficient

References

1. BerggrenM. 2011 methanol industry in focus, 2011. Available at: www.methanol.orgSearch in Google Scholar

2. TijmPJ, WallerF, BrownD. Methanol technology developments for the new millennium. Appl Catalysis A Gen2001;221:27582. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0926860X0100805510.1016/S0926-860X(01)00805-5Search in Google Scholar

3. SherwinMB, FrankME. Methanol by three phase reaction. Hydrocarbon Process1976;55:1224.Search in Google Scholar

4. RezaieN, Jahanmin A, Moghtaden B, Rahimpour MR. A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation. Chem Eng Process Process Intensification2005;44:91121. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0255270104002855. Accessed: 14 Feb 2013.10.1016/j.cep.2004.10.004Search in Google Scholar

5. YusupS, AnhNP, ZabiriH. A simulation study of an industrial methanol reactor based on simplified steady-state model. IJRRAS2010;5:21322.Search in Google Scholar

6. ErgunS, OrningAA. Fluid flow through Randomly packed columns and fluidized beds. Ind Eng Chem1949;41:117984. Available at: http://dx.doi.org/10.1021/ie50474a01110.1021/ie50474a011Search in Google Scholar

7. SkrzypekJ, SjJ, NowakP. Thermodynamics and kinetics of low pressure methanol synthesis. Chem Eng J Biochem Eng J1995;0467:101–108.10.1016/0923-0467(94)02955-5Search in Google Scholar

8. GraafGH, et al. Chemical equilibria in methanol synthesis. Chem Eng Sci1986;41:288390. Available at: http://www.sciencedirect.com/science/article/pii/000925098680019710.1016/0009-2509(86)80019-7Search in Google Scholar

9. LovikI. 2001. Modelling, estimation and optimization of the methanol synthesis with catalyst deactivation. Doktoravhandlinger ved NTNU.Search in Google Scholar

10. Kayode CokerA. Ludwig’s applied process design for chemical and petrochemical plants: volume 2: distillation, packed towers, petroleum fractionation, gas processing and dehydration. Amsterdam: Elsevier Science, 2010. Available at: http://books.google.es/books?id=mKOAbHzzcmwCSearch in Google Scholar

11. CusslerEL. Diffusion: mass transfer in fluid systems. Cambridge: Cambridge University Press, 1997. Available at: http://books.google.es/books?id=TGRmfTrsPTQCSearch in Google Scholar

12. WilkeCR, ChangP. Correlation of diffusion coefficients in dilute solutions. AIChE J1955;1:26470. Available at: http://dx.doi.org/10.1002/aic.69001022210.1002/aic.690010222Search in Google Scholar

13. PolingBE, PrausnitzJM, O’ConnellJP. The properties of gases and liquids. New York: McGraw-Hill, 2001. Available at: http://books.google.es/books?id=9tGclC3ZRX0CSearch in Google Scholar

14. HolmanJP. Heat transfer (In Si Units) (Sie). New York: McGraw-Hill, 2008. Available at: http://books.google.es/books?id=1-qf1rzXgPgCSearch in Google Scholar

15. Lurgi. MegaMethanol Brochure by engineering division of Lurgi Oel, Gas and Chemie GmbH. Frankfurt: Lurgi Oil, Gas and Chemie GmbH, 2010.Search in Google Scholar

16. SmithJM. Chemical engineering kinetics. New York: McGraw-Hill, 1981. Available at: http://books.google.es/books?id=zsdTAAAAMAAJSearch in Google Scholar

17. Shiraz petrochemical Complex. Operating data sheets of methanol plant. Shiraz.Search in Google Scholar

18. LuybenWL. Design and control of a methanol reactor/column process. Ind Eng Chem Res2010;49:615063. Available at: http://pubs.acs.org/doi/abs/10.1021/ie100323d10.1021/ie100323dSearch in Google Scholar

19. LuybenWL. 2007. Chemical reactor design and control. Hoboken, New Jersey: Wiley-VCH, 2007.Search in Google Scholar

20. AbrolS, HiltonCM. Modeling, simulation and advanced control of methanol production from variable synthesis gas feed. Computers Chem Eng2012;40:11731. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0098135412000488. Accessed: 15 Feb 2013.10.1016/j.compchemeng.2012.02.005Search in Google Scholar

21. Co-Lan.2013. Cape-open laboratory network. Available at: http://www.colan.org. Accessed:1 Mar 2013.Search in Google Scholar

22. Van BatenJ, et al. 2013. COCO simulator. Available at: http://www.cocosimulator.org. Accessed:1 Mar 2013.Search in Google Scholar

Published Online: 2013-08-27

©2013 by Walter de Gruyter Berlin / Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2013-0061/html
Scroll to top button