Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 7, 2015

Fischer–Tropsch Synthesis in Slurry Bubble Column Reactors: Experimental Investigations and Modeling – A Review

  • Omar M. Basha ORCID logo , Laurent Sehabiague , Ahmed Abdel-Wahab and Badie I. Morsi EMAIL logo

Abstract

This paper presents an extensive review of the kinetics, hydrodynamics, mass transfer, heat transfer and mathematical as well as computational fluid dynamics (CFD) modeling of Low-Temperature Tropsch Synthesis (LTFT) synthesis in Slurry Bubble Column Reactors (SBCRs), with the aim of identifying potential research and development areas in this particular field. The kinetic expressions developed for F-T synthesis over iron and cobalt catalysts along with the water gas shift (WGS) reactions are summarized and compared. The experimental data and empirical correlations to predict the hydrodynamics (gas holdup, Sauter mean bubble diameter, and bubble rise velocity), mass transfer coefficients and heat transfer coefficients are presented. The effects of various operating variables, including pressure, temperature, gas velocity, catalyst concentration, reactor geometry, and reactor internals on the hydrodynamic and transport parameters as well as the performance of SBCRs are discussed. Additionally, modeling efforts of SBCRs, using axial dispersion models (ADM), multiple cell recirculation models (MCCM) and computational fluid dynamics (CFD), are addressed. This review revealed the following:

  1. Numerous F-T and WGS kinetic rate expressions are available for cobalt and iron catalysts and one must be careful in selecting the appropriate expressions for LTFT. Iron catalyst suffers from severe attrition and subsequent deactivation in SBCRs and accordingly building a costly catalyst manufacturing facility onsite is required to maintain a steady operation of the F-T reactor;

  2. Experimental data on the hydrodynamic and transport parameters at high pressures and temperatures, typical to those of actual F-T synthesis, remain scanty when compared with the plethora of studies conducted using air–water systems in small reactors at ambient conditions;

  3. Several empirical correlations for predicting the hydrodynamic and mass as well heat transfer parameters are available and one should select those which consider the reactor diameter, gas mixtures and the potential foamability of the F-T liquids;

  4. The effect of cooling internals configuration and sparger design on the hydrodynamic and transport parameters, local turbulence, mixing and catalyst attrition are yet to be seriously addressed;

  5. The impact of operating variables on the hydrodynamic and transport parameters as well as the overall performance of the SBCRs should be investigated using actual F-T fluid–solid systems under typical pressures and temperatures using a large-scale reactor (>0.15 m ID) in the presence of gas spargers and cooling internals;

  6. Significant efforts are still required in order to advance CFD modeling of SBCRs, particularly those pertaining to the relevant closure models, such as drag, lift and turbulence. Also, cooling internals configuration and the design as well as orientation of gas spargers should be accounted for in the CFD modeling; and

  7. Proper validations of the CFD formulations using actual systems for F-T SBCR are needed.

Nomenclature

a

Interfacial area

Ab

Heat exchange surface, bed side (m2)

Af

Relative free cross-sectional area

Am

log mean of AbandAu (m2)

Au

Heat exchange surface, heat transfer medium side (m2)

C*

Equilibrium concentration (solubility) in the liquid phase (mol·m−3)

CD

Drag Coefficient

CL

Concentration in the liquid phase (mol·m−3)

CS

Concentration of solid particles in the slurry phase (wt. %)

Cs,0

Solid Concentration at the bottom of the reactor (kg. m−3)

CP

Concentration of solid particles in the slurry phase (kg. m−3)

CV

Volumetric concentration of solid particles in the slurry phase (vol. %)

dC

Column diameter (m)

dp

Particle diameter (m)

dR

Diameter of internal pipe (m)

dt

Tube/Column diameter (m)

DAB

Diffusivity of phase A into B

Dea

Effective diffusivity in the axial direction

Dra

Effective diffusivity in the radial direction

Drl

Radial dispersion coefficient in SBCR

Dzl

Axial dispersion coefficient in SBCR

Ea

Activation energy (J/mol)

E"o

Eötvös number

f

Friction factor

FC

Particle collision force (N)

FD

Drag force (N)

Fk

Interphase momentum exchange (Ns)

Fl,m

Suspension inertial force (N)

FL

Lift force (N)

Fp

Continuous phase pressure gradient force (N)

Fr

Froude number

FVM

Virtual mass force (N)

g

Gravitational acceleration, m/s2

G

Mass flow rate (kg/m2·s)

Ga

Galileo number

h

Reactor height (m)

hC

Column height (m)

ΔH

Enthalpy (kJ/mol)

k

Turbulent kinetic energy (J/mol)

kLa

Volumetric liquid side mass transfer coefficient (1/s)

kWGS

WGS reaction rate constant (units depend on rate expression)

KL

Thermal conductivity (W/m·K)

l

Packing height (m)

le

Characteristic length scale of the eddies

MW

Molecular weight (kg.kmol−1)

nR

Number of internals

P

Pressure (Pa)

PS

Saturation vapor pressure (Pa)

Pe

Peclet number

Pm

Specific energy of dissipation per unit mass (J/kg)

Pr

Prandtl number

PV

Liquid-phase vapor pressure, bar

r

Reaction rate (mol.kg−1catalyst.s−1)

R

Reaction term (mol.m−3.s−1)

Re

Reynolds number

S

Particle surface area per unit volume (m2/m3)

Sc

Schmidt number

Sh

Sherwood number

t

Time, s

tR

Tube pitch

T

Temperature, K

ub

Gas bubble rise velocity, m·s−1

ug

Superficial gas velocity, m·s−1

U

Overall heat transfer coefficient (kJ/m2·s·°C)

v

Linear flow velocity (m/s)

$$νeff,rad

Radial momentum transfer coefficient (m2/s)

νsl

Kinematic slurry viscosity (m2/s)

X

Weight fraction of the primary liquid in the mixture (See Behkish et al. [157])

y

Mole fraction of gas component, −

Greek Letters
αl

Heat transfer coefficient on the bed side (kJ/m2·s·°C)

αu

Heat transfer coefficient, heat transfer medium side (kJ/m2·s·°C)

Γ

Gas sparger coefficient (See Behkish et al. [157])

ε

Void fraction (–)

η

Kinematic viscosity (m2/s)

κ

Coefficient of bulk viscosity

λ

Dimensionless radial position at maximum downward liquid velocity

λea

Effective axial coefficient of thermal conductivity

λe0

Static contribution of effective thermal conductivity (kJ/m2·s·°C)

λg

Coefficient of thermal conductivity of fluid (kJ/m2·s·°C)

λp

Coefficient of thermal conductivity of packed bed with flowing fluid (kJ/m2·s·°C)

λp0

Coefficient of thermal conductivity of packed bed with stagnant fluid (kJ/m2·s·°C)

λra

Effective radial coefficient of thermal conductivity

λs

Coefficient of thermal conductivity of packing material (kJ/m2·s·°C)

μ

Viscosity kg/m·s

μb

Relative apparent bed viscosity

μT

Turbulent or eddy viscosity

υ

Local velocity of the dispersed phase

ξ

Dimensionless radial position

π

3.14

ρ

Density (kg/m3)

σ

Surface tension (N/m)

τ

Viscous stress tensor (Pa)

τrz

Reynolds shear stress

Subscripts
g

Gas

l

liquid

s

Solid

w

wall

Acronyms
ADM

Axial-Dispersion Model

CFD

Computational Fluid Dynamics

CTL

Coal to Liquid

F-T

Fischer–Tropsch

GTL

Gas to Liquid

L-H

Langmuir–Hinshelwood

MCM

Mixing-Cell Model

SDM

Sedimentation-Dispersion Model

WGS

Water Gas Shift

References

1. SchulzH. Short history and present trends of Fischer–Tropsch synthesis. Appl Catal1999;186:312. doi:10.1016/S0926-860X(99)00160-X.Search in Google Scholar

2. LeckelD. Diesel production from Fischer−Tropsch: the past, the present, and new concepts. Energy Fuels2009;23:234258. 2009/05/21. doi:10.1021/ef900064c.Search in Google Scholar

3. DryME. The Fischer-Tropsch process: 1950-2000. Catal Today2002;71:22741. 10.1016/s0920-5861(01)00453-9.Search in Google Scholar

4. SteynbergA, DryM. Fischer-Tropsch technology. Elsevier Science: Amsterdam, 2004.10.1016/S0167-2991(04)80458-0Search in Google Scholar

5. PenniallCL. Fischer-Tropsch based biomass to liquid fuel plants in the New Zealand wood processing industry based on microchannel reactor technology. 2013.Search in Google Scholar

6. SabatierP, SenderensJD. Nouvelles syntheses du methane. CR1902;134:514.Search in Google Scholar

7. Ripfel-NitscheK, HofbauerH, RauchR, GoritschnigM, KochR, LehnerP, et al. BTL–biomass to liquid (Fischer Tropsch process at the biomass gasifier in güssing), in Proceedings of the 15th European Biomass Conference & Exhibition, Berlin, Germany, 2007.Search in Google Scholar

8. LonganbachJR, StiegelGJ, RutkowskiMD, BuchananTL, KlettMG, SchoffRL. Capital and operating cost of hydrogen production from coal gasification, Final Report, U.S. DOE Contract No. DE-AM26-99FT40465, Subcontract No. 990700362, Pittsburgh April 2003.Search in Google Scholar

9. BotesFG, NiemantsverdrietJW, van de LoosdrechtJ. A comparison of cobalt and iron based slurry phase Fischer–Tropsch synthesis. Catal Today2013;215:11220. doi:10.1016/j.cattod.2013.01.013.Search in Google Scholar

10. CollotA-G. Matching gasification technologies to coal properties. Int J Coal Geol2006;65:191212. doi:10.1016/j.coal.2005.05.003.Search in Google Scholar

11. EspinozaRL, SteynbergaP, JagerB, VoslooaC. Low temperature Fischer–Tropsch synthesis from a sasol perspective. Appl Catal1999;186:1326. doi:10.1016/S0926-860X(99)00161-1.Search in Google Scholar

12. DryM. The Fischer-Tropsch process – commercial aspects. Catal Today1990;6:183–206. http://dx.doi.org/10.1016/0920-5861(90)85002-6.10.1016/0920-5861(90)85002-6Search in Google Scholar

13. XuJ, FromentG. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J1989;35:8896. doi:10.1002/aic.690350109.Search in Google Scholar

14. MitchellW, ThijssenJ, BentleyJM. Development of a catalytic partial oxidation/ethanol reformer for fuel cell applications. Soc Automot Eng1995;Paper No. 9.10.4271/952761Search in Google Scholar

15. BradfordM, VanniceM. Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Appl Catal1996;142:97122.10.1016/0926-860X(96)00066-XSearch in Google Scholar

16. KusakabeK, SotowaK-I, EdaT, IwamotoY. Methane steam reforming over Ce–ZrO2-supported noble metal catalysts at low temperature. Fuel Process Technol2004;86:31926. doi:10.1016/j.fuproc.2004.05.003.Search in Google Scholar

17. Bermana, KarnRK, EpsteinM. Kinetics of steam reforming of methane on Ru/Al2O3 catalyst promoted with Mn oxides. Appl Catal2005;282:7383. doi:10.1016/j.apcata.2004.12.003.Search in Google Scholar

18. WuP, LiX, JiS, LangB, HabimanaF, LiC. Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catal Today2009;146:826. doi:10.1016/j.cattod.2009.01.031.Search in Google Scholar

19. de AbreuAJ, LucrédioAF, AssafEM. Ni catalyst on mixed support of CeO2–ZrO2 and Al2O3: effect of composition of CeO2–ZrO2 solid solution on the methane steam reforming reaction. Fuel Process Technol2012;102:1405. doi:10.1016/j.fuproc.2012.04.030.Search in Google Scholar

20. RohH-S, EumI-H, JeongD-W. Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions. Renewable Energy2012;42:21216. doi:10.1016/j.renene.2011.08.013.Search in Google Scholar

21. WoodDA, NwaohaC, TowlerBF. Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J Nat Gas Sci Eng2012;9:196208. doi:10.1016/j.jngse.2012.07.001.Search in Google Scholar

22. SchulzH, SchaubG, ClaeysM, RiedelT. Transient initial kinetic regimes of Fischer–Tropsch synthesis. Appl Catal1999;186:21527. doi:10.1016/S0926-860X(99)00145-3.Search in Google Scholar

23. DeverellR, YuM. Long run commodity prices: where do we stand? Credit Suisse 27 July, 2011.Search in Google Scholar

24. LiuZ, ShiS, LiY. Coal liquefaction technologies – development in china and challenges in chemical reaction engineering. Chem Eng Sci2010;65:1217. doi:10.1016/j.ces.2009.05.014.Search in Google Scholar

25. de KlerkA. Fischer-Tropsch refining. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2012.Search in Google Scholar

26. KreutzTG, LarsonED, LiuG, WilliamsRH. Fischer-Tropsch fuels from coal and biomass, in 25th Annual International Pittsburgh Coal Conference, 2008.Search in Google Scholar

27. de KlerkA, FurimskyE. Catalysis in the refining of Fischer-Tropsch syncrude: Cambridge, United Kingdom. Royal Society of Chemistry, 2010.10.1201/9781420062571.ch18Search in Google Scholar

28. BaoB, El-HalwagiMM, ElbashirNO. Simulation, integration, and economic analysis of gas-to-liquid processes. Fuel Process Technol2010;91:70313. doi:10.1016/j.fuproc.2010.02.001.Search in Google Scholar

29. SudiroM, BertuccoA. Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: process simulation and optimization. Energy2009;34:220614. doi:10.1016/j.energy.2008.12.009.Search in Google Scholar

30. SehabiagueL, BashaO, MorsiBI. Recycling of tail gas in Fischer-Tropsch bubble column slurry reactor and its impact on the coal-to-liquid process, in Proceedings of the 30th Annual International Pittsburgh Coal Conference, Beijing, China, 2013.Search in Google Scholar

31. SehabiagueL. Modeling, scaleup and optimization of slurry bubble column reactors for Fischer-Tropsch synthesis, Doctoral Dissertation, Department of Chemical and Petroleum Engineering, University of Pittsburgh, 2012.Search in Google Scholar

32. ChedidR, KobroslyM, GhajarR. The potential of gas-to-liquid technology in the energy market: the case of Qatar. Energy Policy2007;35:4799811. doi:10.1016/j.enpol.2007.03.017.Search in Google Scholar

33. van de LoosdrechtJ, BotesFG, CiobicaIM, FerreiraA, GibsonP, MoodleyDJ, et al. 7.20 – Fischer–Tropsch synthesis: catalysts and chemistry. In: ReedijkJ and PoeppelmeierK, editors. Comprehensive inorganic chemistry II, 2nd edition. Amsterdam: Elsevier, 2013:52557. doi:10.1016/B978-0-08-097774-4.00729-4.10.1016/B978-0-08-097774-4.00729-4Search in Google Scholar

34. BradyRC, PettitR. On the mechanism of the Fischer-Tropsch reaction. The chain propagation step. J Am Chem Soc1981;103:12879.10.1021/ja00395a081Search in Google Scholar

35. SatterfieldCN, HuffGA. Product distribution from iron catalyst in Fischer-Tropsch slurry reactors. Ind Eng Chem Process Des Dev1982;21:46570.10.1021/i200018a020Search in Google Scholar

36. van DijkHAJ. The Fischer-Tropsch synthesis: a mechanistic study using transient isotopic tracing, Ph.D. Dissertation, Technische Universiteit Eindhoven, Eindhoven, the Netherlands, 2001.Search in Google Scholar

37. InderwildiOR, JenkinsSJ, KingDA. Fischer-Tropsch mechanism revisited: alternative pathways for the production of higher hydrocarbons from synthesis gas. J Phys Chem C2008;112:13057.10.1021/jp710674qSearch in Google Scholar

38. ChangJ, BaiL, TengB, ZhangR, YangJ, XuY, et al. Kinetic modeling of Fischer–Tropsch synthesis over catalyst in slurry phase reactor. Chem Eng Sci2007;62:498391. doi:10.1016/j.ces.2006.12.031.Search in Google Scholar

39. LoxES, FromentGF. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling. Ind Eng Chem Res1993;32:7182. 1993/01/01. doi:10.1021/ie00013a011.Search in Google Scholar

40. LoxES, FromentGF. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 1. Experimental procedure and results. Ind Eng Chem Res1993;32:6170. 1993/01/01. doi:10.1021/ie00013a010.Search in Google Scholar

41. WangY-N, XuY-Y, XiangH-W, LiY-W, ZhangB-J. Modeling of catalyst pellets for Fischer−Tropsch synthesis. Ind Eng Chem Res2001;40:432435. 2001/10/01. doi:10.1021/ie010080v.Search in Google Scholar

42. TodicB, BhateliaT, FromentGF, MaW, JacobsG, DavisBH, et al. Kinetic model of Fischer–Tropsch synthesis in a slurry reactor on Co–Re/Al2O3 catalyst. Ind Eng Chem Res2012;52:66979. 2013/01/16. doi:10.1021/ie3028312.Search in Google Scholar

43. WangYN, XuYY, LiYW, ZhaoYL, ZhangBJ. Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis: reactor model and its applications. Chem Eng Sci2003;58:86775.10.1016/S0009-2509(02)00618-8Search in Google Scholar

44. YangGQ, FanLS. Axial liquid mixing in high-pressure bubble columns. AIChE J2003;49:19952008. doi:10.1002/aic.690490810.Search in Google Scholar

45. Van der LaanGP, BeenackersAACM, KrishnaR. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors. Chem Eng Sci1999;54:501319.10.1016/S0009-2509(99)00225-0Search in Google Scholar

46. SatterfieldC, HanlonR. Effect of water on the iron-catalyzed Fischer-Tropsch synthesis. Ind Eng Chem Prod Res Dev1986;25:40714.10.1021/i300023a007Search in Google Scholar

47. AndersonRB. Catalysis, vol 4. New York: P. H. Emmet, 1956.Search in Google Scholar

48. Huff Jr GA, SatterfieldCN. Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst. Ind Eng Chem Process Des Dev1984;23:696705.10.1021/i200027a012Search in Google Scholar

49. LedakowiczS, NettelhoffH, KokuunR, DeckwerWD. Kinetics of the Fischer-Tropsch synthesis in the slurry phase on a potassium promoted iron catalyst. Ind Eng Chem Process Des Dev1985;24:10439. 1985/10/01. doi:10.1021/i200031a025.Search in Google Scholar

50. BotesFG, BremanBB. Development and testing of a new macro kinetic expression for the iron-based low-temperature Fischer−Tropsch reaction. Ind Eng Chem Res2006;45:741526. 2006/10/01. doi:10.1021/ie060491h.Search in Google Scholar

51. ZhouL-P, HaoX, GaoJ-H, YangY, WuB-S, XuJ, et al. Studies and discriminations of the kinetic models for the iron-based Fischer−Tropsch catalytic reaction in a recycle slurry reactor. Energy Fuels2010;25:529. 2011/01/20. doi:10.1021/ef101270u.Search in Google Scholar

52. WojciechowskiBW. The kinetics of the Fischer-Tropsch synthesis. Catal Rev1988;30:629702. 1988/12/01. doi:10.1080/01614948808071755.Search in Google Scholar

53. Van Der LaanGP, BeenackersAACM. Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev1999;41:255318. 1999/01/10. doi:10.1081/cr-100101170.Search in Google Scholar

54. ZennaroR, TagliabueM, BartholomewCH. Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt. Catal Today2000;58:30919. doi:10.1016/S0920-5861(00)00264-9.Search in Google Scholar

55. DasT, ConnerW, LiJ, JacobsG. Fischer-Tropsch synthesis: kinetics and effect of water for a CO/SiO2 catalyst. Energy Fuels2005;19:14309.10.1021/ef049869jSearch in Google Scholar

56. OutiA, RautavuomaI, van der BaanHS. Kinetics and mechanism of the Fischer Tropsch hydrocarbon synthesis on a cobalt on alumina catalyst. Appl Catal1981;1:24772. doi:10.1016/0166-9834(81)80031-0.Search in Google Scholar

57. SarupB, WojciechowskiBW. Studies of the Fischer-Tropsch synthesis on a cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Can J Chem Eng1989;67:6274. doi:10.1002/cjce.5450670110.Search in Google Scholar

58. YatesIC, SatterfieldCN. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuels1991;5:16873. 1991/01/01. doi:10.1021/ef00025a029.Search in Google Scholar

59. BotesFG, van DykB, McGregorC. The development of a macro kinetic model for a commercial Co/Pt/Al2O3 Fischer−Tropsch catalyst. Ind Eng Chem Res2009;48:1043947. 2009/12/02. doi:10.1021/ie900119z.Search in Google Scholar

60. GraciaJ, PrinslooF, NiemantsverdrietJW. Mars-van Krevelen-like mechanism of CO hydrogenation on an iron carbide surface. Catal Lett2009;133:25761. 2009/12/01. doi:10.1007/s10562-009-0179-5.Search in Google Scholar

61. DengL-J, HuoC-F, LiuX-W, ZhaoX-H, LiY-W, WangJ, et al. Density functional theory study on surface CxHy formation from CO activation on Fe3c(100). J Phys Chem C2010;114:2158592. 2010/12/16. doi:10.1021/jp108480e.Search in Google Scholar

62. BrötzW. Zur systematik der Fischer-Tropsch-katalyse. Z Elektro Angew Phys Chem1949;53:3016. doi:10.1002/bbpc.19490530510.Search in Google Scholar

63. HallCC, GallD, SmithSL. A comparison of the fixed-bed, liquid phase ('slurry'), and fluidized-bed techniques in the Fischer-Tropsch synthesis. J Inst Pet1952;38:84576.Search in Google Scholar

64. AndersonJR, BoudartM. Catalysis: science and technology, vol. 4. Springer-Verlag: Berlin, Germany, 1983.Search in Google Scholar

65. AndersonRB, KarnFS. A rate equation for the Fischer-Tropsch synthesis on iron catalysts. J Phys Chem1960;64:8058. 1960/06/01. doi:10.1021/j100835a025.Search in Google Scholar

66. KölbelH. Kinetics and reaction mechanism of the hydrocarbon synthesis from carbon monoxide and water vapor on iron, cobalt, and nickel catalysts, in the Actes du 2ème Congrès International de Catalyse, Paris, 1960.Search in Google Scholar

67. AndersonRB, KarnFS, ShultzJF. Kinetics of the Fischer-Tropsch synthesis on iron catalysts. US Bur Mines Bull1964;614:1–42.Search in Google Scholar

68. DryME, ShinglesT, BoshoffLJ. Rate of the Fischer-Tropsch reaction over iron catalysts. J Catal1972;25:99104.10.1016/0021-9517(72)90205-9Search in Google Scholar

69. DryME. Advances in Fischer-Tropsch chemistry. Ind Eng Chem Process Des Dev1976;15:2826.Search in Google Scholar

70. AtwoodHE, BennettCO. Kinetics of the Fischer-Tropsch reaction over iron. Ind Eng Chem Process Des Dev1979;18:16370. 1979/01/01. doi:10.1021/i260069a023.Search in Google Scholar

71. ThomsonWJ. Applied Fischer-Tropsch kinetics for a flame sprayed iron catalyst. Prepr Pap - Am Chem Soc. Div Fuel Chem1979;25:10118.Search in Google Scholar

72. FeimerJL, SilvestonPL, HudginsRR. Steady-state study of the Fischer-Tropsch reaction. Ind Eng Chem Prod Res Dev1981;20:60915. 1981/12/01. doi:10.1021/i300004a005.Search in Google Scholar

73. LeibTM, KuoJCW. Modeling the Fischer-Tropsch synthesis in slurry bubble-column reactors, in AIChE Annual Meeting, San Francisco, 1984.Search in Google Scholar

74. NettelhoffH. Studies on the kinetics of Fischer-Tropsch synthesis in slurry phase. Ger Chem Eng1985;8:17785.Search in Google Scholar

75. DeckwerWD, KokuunR, SandersE, LedakowiczS. Kinetic studies of Fischer-Tropsch synthesis on suspended iron/potassium catalyst– rate inhibition by carbon dioxide and water. Ind Eng Chem Process Des Dev1986;25:6439. 1986/07/01. doi:10.1021/i200034a008.Search in Google Scholar

76. ZimmermanWH, BukurDB. Reaction kinetics over iron catalysts used for the Fischer Tropsch synthesis. Can J Chem Eng1990;68:292300.10.1002/cjce.5450680215Search in Google Scholar

77. LiuH-S, ChiungW-C, WangY-C. Effect of lard oil, olive oil and castor oil on oxygen transfer in an agitated fermentor. Biotechnol Tech1994;8:1720. doi:10.1007/BF00207627.Search in Google Scholar

78. LiuZ-T, LiY-W, ZhouJ-L, ZhangB-J. Intrinsic kinetics of Fischer-Tropsch synthesis over an Fe-Cu-K catalyst. J Chem Soc Faraday Trans1995;91:325561. doi:10.1039/ft9959103255.Search in Google Scholar

79. van der LaanGP, BeenackersAACM. Hydrocarbon selectivity model for the gas−solid Fischer−Tropsch synthesis on precipitated iron catalysts. Ind Eng Chem Res1999;38:127790. 1999/04/01. doi:10.1021/ie980561n.Search in Google Scholar

80. Van BergePJ. Fischer-Tropsch studies in the slurry phase favouring wax production. Potchefstroom Campus: North-West University, 1994.Search in Google Scholar

81. van der LaanGP, BeenackersAaCM. Intrinsic kinetics of the gas–solid Fischer–Tropsch and water gas shift reactions over a precipitated iron catalyst. Appl Catal2000;193:3953. doi:10.1016/S0926-860X(99)00412-3.Search in Google Scholar

82. JessA, PoppR, HeddenK. Fischer–Tropsch-synthesis with nitrogen-rich syngas: fundamentals and reactor design aspects. Appl Catal1999;186:32142. doi:10.1016/S0926-860X(99)00152-0.Search in Google Scholar

83. van SteenE, SchulzH. Polymerisation kinetics of the Fischer–Tropsch CO hydrogenation using iron and cobalt based catalysts. Appl Catal1999;186:30920. doi:10.1016/S0926-860X(99)00151-9.Search in Google Scholar

84. EliasonSA, BartholomewCH. Reaction and deactivation kinetics for Fischer–Tropsch synthesis on unpromoted and potassium-promoted iron catalysts. Appl Catal1999;186:22943. doi:10.1016/S0926-860X(99)00146-5.Search in Google Scholar

85. WangYN. Modelization and simulation of fixed-bed Fischer-Tropsch synthesis: kinetics, pellet and reactor, Ph.D. Dissertation, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China, 2001.Search in Google Scholar

86. WangY-N, MaW-P, LuY-J, YangJ, XuY-Y, XiangH-W, et al. Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst. Fuel2003;82:195213. doi:10.1016/S0016-2361(02)00154-0.Search in Google Scholar

87. YangJ, LiuY, ChangJ, WangY-N, BaiL, XuY-Y, et al. Detailed kinetics of Fischer−Tropsch synthesis on an industrial Fe−Mn catalyst. Ind Eng Chem Res2003;42:506690. 2003/10/01. doi:10.1021/ie030135o.Search in Google Scholar

88. TengB-T, ChangJ, ZhangC-H, CaoD-B, YangJ, LiuY, et al. A comprehensive kinetics model of Fischer–Tropsch synthesis over an industrial Fe–Mn catalyst. Appl Catal2006;301:3950. doi:10.1016/j.apcata.2005.11.014.Search in Google Scholar

89. BotesFG, BremanBB. Development of a new kinetic expression for the iron-based Fischer-Tropsch reaction, in AIChE Annual Meeting, Conference Proceedings, 2006.Search in Google Scholar

90. ChangJ, BaiL, TengB, ZhangR, YangJ, XuY, et al. Kinetic modeling of Fischer-Tropsch synthesis over Fe-Cu-K-SiO2 catalyst in slurry phase reactor. Chem Eng Sci2007;62:498391. doi:10.1016/j.ces.2006.12.031.Search in Google Scholar

91. ZhouL-P, HaoX, GaoJ-H, YangY, WuB-S, XuJ, et al. Studies and discriminations of the kinetic models for the iron-based Fischer−Tropsch catalytic reaction in a recycle slurry reactor. Energy Fuels2011;25:529. 2011/01/20. doi:10.1021/ef101270u.Search in Google Scholar

92. LaanGPvd. Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis. Groningen, The Netherlands: University of Groningen, 1999.Search in Google Scholar

93. ShenWJ, ZhouJL, ZhangBJ. Kinetics of Fischer-Tropsch synthesis over precipitated iron catalyst. J Nat Gas Chem1994;4:385400.Search in Google Scholar

94. KeyserMJ, EversonRC, EspinozaRL. Fischer−Tropsch kinetic studies with cobalt−manganese oxide catalysts. Ind Eng Chem Res2000;39:4854. doi:10.1021/ie990236f.Search in Google Scholar

95. BotesFG. Water–gas-shift kinetics in the iron-based low-temperature Fischer–Tropsch synthesis. Appl Catal2007;328:23742. doi:10.1016/j.apcata.2007.06.016.Search in Google Scholar

96. van der LaanGP, BeenackersAACM, KrishnaR. Multicomponent reaction engineering model for Fe-catalyzed Fischer–Tropsch synthesis in commercial scale slurry bubble column reactors. Chem Eng Sci1999;54:5013–19.10.1016/S0009-2509(99)00225-0Search in Google Scholar

97. YangC-H, MassothFE, ObladAG. Kinetics of CO + H2 reaction over Co-Cu-Al2O3 catalyst. In: KuglerEL and SteffgenFW, editors. Hydrocarbon synthesis from carbon monoxide and hydrogen, vol 178. American Chemical Society, 1979:3546. doi:10.1021/ba-1979-0178.ch005.ed.Search in Google Scholar

98. PannellRB, KibbyCL, KobylinskiTP. A steady-state study of Fischer-Tropsch product distributions over cobalt, iron and ruthenium. In: SeivamaT and TanabeK, editors. Studies in surface science and catalysis, vol 7. Elsevier: Amsterdam, The Netherlands, 1981: 44759. doi:10.1016/S0167-2991(09)60290-1.Part A.Search in Google Scholar

99. WithersHP, EliezerKF, MitchellJW. Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts. Ind Eng Chem Res1990;29:180714. 1990/09/01. doi:10.1021/ie00105a011.Search in Google Scholar

100. ViscontiCG, TronconiE, LiettiL, ZennaroR, ForzattiP. Development of a complete kinetic model for the Fischer–Tropsch synthesis over Co/Al2O3 catalysts. Chem Eng Sci2007;62:533843. doi:10.1016/j.ces.2006.12.064.Search in Google Scholar

101. AnfrayJ, BremaudM, FongarlandP, KhodakovA, JallaisS, SchweichD. Kinetic study and modeling of Fischer–Tropsch reaction over a catalyst in a slurry reactor. Chem Eng Sci2007;62:53536. doi:10.1016/j.ces.2006.12.035.Search in Google Scholar

102. KaiserP, PöhlmannF, JessA. Intrinsic and effective kinetics of cobalt-catalyzed Fischer-Tropsch synthesis in view of a power-to-liquid process based on renewable energy. Chem Eng Technol2014;37:96472. doi:10.1002/ceat.201300815.Search in Google Scholar

103. IngaJR. Scaleup and scaledown of slurry reactors: a new methodology, 1997.Search in Google Scholar

104. DeckwerW-D, LouisiY, ZaidiA, RalekM. Hydrodynamic properties of the Fischer-Tropsch slurry process. Ind Eng Chem Process Des Dev1980;19:699708. 1980/10/01. doi:10.1021/i260076a032.Search in Google Scholar

105. BukurDB, PatelSA, DalyJG. Gas holdup and solids dispersion in a three-phase slurry bubble column. AIChE J1990;36:17315.10.1002/aic.690361114Search in Google Scholar

106. KrishnaR, SwartJWAD, EllenbergerJ, MartinaGB, MarettoC. Gas holdup in slurry bubble columns: effect of column diameter and slurry concentration. AIChE J1997;43:31116.10.1002/aic.690430204Search in Google Scholar

107. VanduCO, KoopK, KrishnaR. Volumetric mass transfer coefficient in a slurry bubble column operating in the heterogeneous flow regime. Chem Eng Sci2004;59:541723. doi:10.1016/j.ces.2004.07.085.Search in Google Scholar

108. BehkishA, LemoineR, SehabiagueL, OukaciR, MorsiBI. Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures. Chem Eng J2007;128:6984. doi:10.1016/j.cej.2006.10.016.Search in Google Scholar

109. BehkishA, MenZ, IngaJR, MorsiBI. Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures. Chem Eng Sci2002;57:330724. doi:10.1016/S0009-2509(02)00201-4.Search in Google Scholar

110. WooK-J, KangS-H, KimS-M, BaeJ-W, JunK-W. Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis: determination of optimum condition. Fuel Process Technol2010;91:4349. doi:10.1016/j.fuproc.2009.04.021.Search in Google Scholar

111. SehabiagueL, MorsiBI. Hydrodynamic and mass transfer characteristics in a large-scale slurry bubble column reactor for gas mixtures in actual Fischer–Tropsch cuts. Int J Chem Reactor Eng2013;11:120. doi:10.1515/ijcre-2012-0042.Search in Google Scholar

112. VanduCO, KrishnaR. Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime. Chem Eng Process Process Intensif2004;43:98795. doi:10.1016/j.cep.2003.09.007.Search in Google Scholar

113. HikitaH, AsaiS, TanigawaK. Gas hold-up in bubble columns. Chem Eng J1980;20:5967.10.1016/0300-9467(80)85006-4Search in Google Scholar

114. AkitaK, YoshidaF. Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties. Ind Eng Chem Process Des Dev1973;12:7680. doi:10.1021/i260045a015.Search in Google Scholar

115. DeckwerWD, FieldRW. Bubble column reactors. Wiley: New York, USA, 1992.Search in Google Scholar

116. ShahYT, KelkarBG, GodboleSP, DeckwerW-D. Design parameters estimations for bubble column reactors. AIChE J1982;28:35379. doi:10.1002/aic.690280302.Search in Google Scholar

117. DeckwerWD, BurckhartR, ZollG. Mixing and mass transfer in tall bubble columns. Chem Eng Sci1974;29:217788. doi:10.1016/0009-2509(74)80025-4.Search in Google Scholar

118. KrishnaR, EllenbergerJ. Gas holdup in bubble column reactors operating in the churn-turbulent flow regime. AIChE J1996;42:262734.10.1002/aic.690420923Search in Google Scholar

119. ClarkKN. The effect of high pressure and temperature on phase distributions in a bubble column. Chem Eng Sci1990;45:23017.10.1016/0009-2509(90)80109-RSearch in Google Scholar

120. BehkishA. Hydrodynamic and mass transfer parameters in large-scale slurry bubble column reactors, 2004.Search in Google Scholar

121. WilkinsonPM, DlerendonckLv. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns. Chem Eng Sci1990;45:230915.10.1016/0009-2509(90)80110-ZSearch in Google Scholar

122. JiangP, LinT-J, LuoX, FanL-S. Flow visualization of high pressure (21 MPa) bubble column: bubble characteristics. Chem Eng Res Des1995;73:26974.Search in Google Scholar

123. TherningP, RasmusonA. Liquid dispersion, gas holdup and frictional pressure drop in a packed bubble column at elevated pressures. Chem Eng J2001;81:3315.10.1016/S1385-8947(00)00222-9Search in Google Scholar

124. OyevaarM, De La RieT, Van der SluijsC, WesterterpK. Interfacial areas and gas hold-ups in bubble columns and packed bubble columns at elevated pressures. Chem Eng Process Process Intensif1989;26:114.10.1016/0255-2701(89)87001-1Search in Google Scholar

125. SmithG, GamblinB, NewtonD. X-ray imaging of slurry bubble column reactors: the effects of system pressure and scale. Int J Multiphase Flow1996;22:102.10.1016/S0301-9322(97)88199-2Search in Google Scholar

126. SoongY, HarkeFW, GamwoIK, SchehlRR, ZarochakMF. Hydrodynamic study in a slurry-bubble-column reactor. Catal Today1997;35:42734. doi:10.1016/S0920-5861(96)00211-8.Search in Google Scholar

127. öztürkSS, SchumpeA, DeckwerWD. Organic liquids in a bubble column: holdups and mass transfer coefficients. AIChE J1987;33:147380. doi:10.1002/aic.690330907.Search in Google Scholar

128. BhagaD, PrudenBB, WeberME. Gas holdup in a bubble column containing organic liquid mixtures. Can J Chem Eng1971;49:41720. doi:10.1002/cjce.5450490320.Search in Google Scholar

129. StegemanD, KnopPA, WijnandsAJG, WesterterpKR. Interfacial area and gas holdup in a bubble column reactor at elevated pressures. Ind Eng Chem Res1996;35:38427. doi:10.1021/ie960325h.Search in Google Scholar

130. GodboleSP, SchumpeA, ShahYT, CarrNL. Hydrodynamics and mass transfer in non-Newtonian solutions in a bubble column. AIChE J1984;30:21320.10.1002/aic.690300207Search in Google Scholar

131. YasunishiA, FukumaM, MuroyamaK. Measurement of behavior of gas bubbles and gas holdup in a slurry bubble column by a dual electroresistivity probe method. J Chem Eng Jpn1986;19:4449. doi:10.1252/jcej.19.444.Search in Google Scholar

132. NemeF, CoppolaL, BöhmU. Gas holdup and mass transfer in solid suspended bubble columns in presence of structured packings. Chem Eng Technol1997;20:297303.10.1002/ceat.270200503Search in Google Scholar

133. WilkinsonPM, SpekAP, van DierendonckLL. Design parameters estimation for scale-up of high-pressure bubble columns. AIChE J1992;38:54454. doi:10.1002/aic.690380408.Search in Google Scholar

134. KluytmansJHJ, KusterBFM, SchoutenJC. Gas holdup in a slurry bubble column: influence of electrolyte and carbon particles. Ind Eng Chem Res2001;40:532633. doi:10.1021/ie001078r.Search in Google Scholar

135. CrabtreeJR, BridgwaterJ. Bubble coalescence in viscous liquids. Chem Eng Sci1971;26:83951. doi:10.1016/0009-2509(71)83045-2.Search in Google Scholar

136. FanL, YangG, LeeD, TsuchiyaK, LuoX. Some aspects of high-pressure phenomena of bubbles in liquids and liquid–solid suspensions. Chem Eng Sci1999;54:4681709.10.1016/S0009-2509(99)00348-6Search in Google Scholar

137. KaraS, KelkarBG, ShahYT, CarrNL. Hydrodynamics and axial mixing in a three-phase bubble column. Ind Eng Chem Process Des Dev1982;21:58494. doi:10.1021/i200019a009.Search in Google Scholar

138. KoideK, TakazawaA, KomuraM, MatsunagaH. Gas holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble columns. J Chem Eng Jpn1984;17:45966.10.1252/jcej.17.459Search in Google Scholar

139. KojimaH, AnjyoH, MochizukiY. Axial mixing in bubble column with suspended solid particles. J Chem Eng Jpn1986;19:2324.10.1252/jcej.19.232Search in Google Scholar

140. De SwartJ, KrishnaR. Influence of particles concentration on the hydrodynamics of bubble column slurry reactors. Chem Eng Res Des1995;73:30813.Search in Google Scholar

141. KrishnaR, van BatenJM, UrseanuMI, EllenbergerJ. Design and scale up of a bubble column slurry reactor for Fischer-Tropsch synthesis. Chem Eng Sci2001;56:53745.10.1016/S0009-2509(00)00258-XSearch in Google Scholar

142. LeeDJ, LuoX, FanL-S. Gas disengagement technique in a slurry bubble column operated in the coalesced bubble regime. Chem Eng Sci1999;54:222736. doi:10.1016/S0009-2509(98)00389-3.Search in Google Scholar

143. GandhiB, PrakashA, BergougnouMa. Hydrodynamic behavior of slurry bubble column at high solids concentrations. Powder Technol1999;103:8094. doi:10.1016/S0032-5910(98)00182-X.Search in Google Scholar

144. SaxenaSC, RaoNS, ThimmapuramPR. Gas phase holdup in slurry bubble columns for two- and three-phase systems. Chem Eng J1992;49:1519. doi:10.1016/0300-9467(92)80051-B.Search in Google Scholar

145. ColmenaresA, SevillaM, GoncalvesJJ, González-MendizabalD. Fluid-dynamic experimental study in a bubble column with internals. Int Commun Heat Mass Transfer2001;28:38998. doi:10.1016/S0735-1933(01)00244-5.Search in Google Scholar

146. ThoratBN, KatariaK, KulkarniAV, JoshiJB. Pressure drop studies in bubble columns. Ind Eng Chem Res2001;40:367588. 2001/08/01. doi:10.1021/ie000759j.Search in Google Scholar

147. YamashitaF. Effect of clear liquid height and gas inlet height on gas holdup in a bubble column. J Chem Eng Jpn1998;31:2858. doi:10.1252/jcej.31.285.Search in Google Scholar

148. KastanekF, ZahradnikJ, KratochvilJ, CermakJ. Modeling of large-scale bubble column reactors for non-ideal gas–liquid systems. In: DoraiswamyLK and MashelkarRA, editors. Frontiers in Chemical Reaction Engineering, vol 1. Wiley: Bombay, India, 1984:330.Search in Google Scholar

149. FairJR, LambrightAJ, AndersenJW. Heat transfer and gas holdup in a sparged contactor. Ind Eng Chem Res Process Des Dev1962;1:336. 1962/01/01. doi:10.1021/i260001a006.Search in Google Scholar

150. YoshidaF, AkitaK. Performance of gas bubble columns: volumetric liquid-phase mass transfer coefficient and gas holdup. AIChE J1965;11:913. doi:10.1002/aic.690110106.Search in Google Scholar

151. PinoLZ, SolariRB, SiquierS, EstevezLA, YepezMM, SaezAE. Effect of operating conditions on gas holdup in slurry bubble columns with a foaming liquid. Chem Eng Commun1992;117:36782.10.1080/00986449208936076Search in Google Scholar

152. ReillyIG, ScottDS, DebruijnTJW, MacintyreD. The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations. Can J Chem Eng1994;72:312.10.1002/cjce.5450720102Search in Google Scholar

153. SmithJS, BurnsLF, ValsarajKT, ThibodeauxLJ. Bubble column reactors for wastewater treatment. 2. The effect of sparger design on sublation column hydrodynamics in the homogeneous flow regime. Ind Eng Chem Res1996;35:170010. 1996/01/01. doi:10.1021/ie950366y.Search in Google Scholar

154. TsuchiyaK, HaryonoMH, TomidaT, HatanoH, OakiH. Performance of a hollow-fiber spiral disk for effective gas dispersion toward high mass transfer rate. Ind Eng Chem Res1996;35:61320. 1996/01/01. doi:10.1021/ie9502751.Search in Google Scholar

155. ElgozaliA, LinekV, FialováM, WeinO, Zahradnı́kJ. Influence of viscosity and surface tension on performance of gas–liquid contactors with ejector type gas distributor. Chem Eng Sci2002;57:298794. doi:10.1016/S0009-2509(02)00165-3.Search in Google Scholar

156. MersmannA. Design and scale-up of bubble and spray columns. Ger Chem Eng1978;1:111.Search in Google Scholar

157. BehkishA, LemoineR, OukaciR, MorsiBI. Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chem Eng J2006;115:15771. doi:10.1016/j.cej.2005.10.006.Search in Google Scholar

158. KimSD, BakerCGI, BergougnouMA. Phase holdup characteristics of three phase fluidized beds. Can J Chem Eng1975;53:1349. doi:10.1002/cjce.5450530126.Search in Google Scholar

159. KitoM, TabeiK, MurataK. Gas and liquid holdups in mobile beds under the countercurrent flow of air and liquid. Ind Eng Chem Process Des Dev1978;17:56871. 1978/10/01. doi:10.1021/i260068a030.Search in Google Scholar

160. OhJS, KimSD. Phase holdup characteristics of three phase fluidized beds of mixed particles. Hwahak Konghak (J Korean Inst Chem Eng)1980;18:37584.Search in Google Scholar

161. BegovichJM, WatsonJ. Hydrodynamic characteristics of three-phase fluidized beds. Cambridge: Cambridge University Press, 1978.10.2172/6919977Search in Google Scholar

162. KhangS, SchwartzJ, ButtkeR. A practical wake model for estimating bed expansion and holdup in three phase fluidized systems, in AIChE Symposium Series, 1983: 4754.Search in Google Scholar

163. SivakumarV, SenthilkumarK, KannadasanT. Prediction of gas holdup in the three-phase fluidized bed: air/Newtonian and non-Newtonian liquid systems. Pol J Chem Technol2010;12:64. doi:10.2478/v10026-010-0053-7.Search in Google Scholar

164. SmithDN, FuchsW, LynnRJ, SmithDH, HessM. Bubble behavior in a slurry bubble column reactor model. In: DudukovicMP and MillsPL, editors. Chemical and catalytic reactor modeling, vol 237. American Chemical Society: Washington, DC, USA, 1984:12547. doi:10.1021/bk-1984-0237.ch008.ed.Search in Google Scholar

165. ReillyIG, ScottDS, De BruijnT, JainA, PiskorzJ. A correlation for gas holdup in turbulent coalescing bubble columns. Can J Chem Eng1986;64:70517. doi:10.1002/cjce.5450640501.Search in Google Scholar

166. SchumpeA, SaxenaAK, FangLK. Gas/liquid mass transfer in a slurry bubble column. Chem Eng Sci1987;42:178796.10.1016/0009-2509(87)80183-5Search in Google Scholar

167. SauerT, HempelD. Fluid dynamics and mass transfer in a bubble column with suspended particles. Chem Eng Technol1987;10:1809.10.1002/ceat.270100123Search in Google Scholar

168. LeeSLP, de LasaHI. Phase holdups in three-phase fluidized beds. AIChE J1987;33:135970. doi:10.1002/aic.690330813.Search in Google Scholar

169. BukurDB, DalyJG. Gas hold-up in bubble columns for Fischer-Tropsch synthesis. Chem Eng Sci1987;42:29679. doi:10.1016/0009-2509(87)87064-1.Search in Google Scholar

170. KrishnaR, SieST. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process Technol2000;64:73105. doi:10.1016/s0378-3820(99)00128-9.Search in Google Scholar

171. ChenC-M, LeuL-P. Hydrodynamics and mass transfer in three-phase magnetic fluidized beds. Powder Technol2001;117:198206.10.1016/S0032-5910(00)00370-3Search in Google Scholar

172. RameshK, MurugesanT. Minimum fluidization velocity and gas holdup in gas–liquid–solid fluidized bed reactors. J Chem Technol Biotechnol2002;77:12936. doi:10.1002/jctb.533.Search in Google Scholar

173. JenaHM, RoyGK, MeikapBC. Prediction of gas holdup in a three-phase fluidized bed from bed pressure drop measurement. Chem Eng Res Des2008;86:13018. doi:10.1016/j.cherd.2008.05.007.Search in Google Scholar

174. SehabiagueL, MorsiBI. Modeling and simulation of a Fischer–Tropsch slurry bubble column reactor using different kinetic rate expressions for iron and cobalt catalysts. Int J Chem Reactor Eng2013;11:122. doi:10.1515/ijcre-2012-0017.Search in Google Scholar

175. ZehnerP. Mehrphasenströmungen in gas-flüssigkeits-reaktoren. DECHEMA Monogr1989;114:21533.Search in Google Scholar

176. EissaSH, El-HalwagiMM, SalehMA. Axial and radial mixing in a cocurrent bubble column. Ind Eng Chem Process Des Dev1971;10:316. 1971/01/01. doi:10.1021/i260037a005.Search in Google Scholar

177. ReithT, RenkenS, IsraëlBA. Gas hold-up and axial mixing in the fluid phase of bubble columns. Chem Eng Sci1968;23:61929. doi:10.1016/0009-2509(68)89007-4.Search in Google Scholar

178. KantakMV, ShettySA, KelkarBG. Liquid phase backmixing in bubble column reactors – a new correlation. Chem Eng Commun1994;127:2334. 1994/01/01. doi:10.1080/00986449408936223.Search in Google Scholar

179. Camacho RubioF, Sánchez MirónA, Cerón GarcíaMC, García CamachoF, Molina GrimaE, ChistiY. Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci2004;59:436976. doi:10.1016/j.ces.2004.06.037.Search in Google Scholar

180. PozinLS, AérovME, BystrovaTA. Study of turbulent diffusion coefficients in bubble-bed liquid phases. Theor Found Chem Eng1969;3:714.Search in Google Scholar

181. WalterJF, BlanchHW. Liquid circulation patterns and their effect on gas holdup and axial mixing in bubble columns. Chem Eng Commun1983;19:24362. 1983/01/01. doi:10.1080/00986448308956344.Search in Google Scholar

182. MiyauchiT, FurusakiS, MorookaS, IkedaY. Transport phenomena and reaction in fluidized catalyst beds. Adv Chem Eng1981;11:275448.10.1016/S0065-2377(08)60028-9Search in Google Scholar

183. ChaoukiJ, LarachiF, DudukovicP. Non-invasive monitoring of multiphase flows. Elsevier Science: Amsterdam, The Netherlands, 1997.Search in Google Scholar

184. FanLS, TsuchiyaK. Bubble wake dynamics in liquids and liquid-solid suspensions. Butterworth-Heinemann: Massachusetts, USA, 1990.Search in Google Scholar

185. RigbyGR, CapesCE. Bed expansion and bubble wakes in three-phase fluidization. Can J Chem Eng1970;48:3438. doi:10.1002/cjce.5450480401.Search in Google Scholar

186. MorookaS, UchidaK, KatoY. Recirculating turbulent flow of liquid in gas-liquid-solid fluidized bed. J Chem Eng Jpn1982;15:2934. doi:10.1252/jcej.15.29.Search in Google Scholar

187. YuYH, KimSD. Bubble characteristics in the radial direction of three-phase fluidized beds. AIChE J1988;34:206972. doi:10.1002/aic.690341217.Search in Google Scholar

188. WuC, SuddardK, Al-dahhanMH. Bubble dynamics investigation in a slurry bubble column. AIChE J2008;54:120312. doi:10.1002/aic.11459.Search in Google Scholar

189. De SwartJWA, Van ViletRE, KrishnaR. Size, structure and dynamics of large bubbles in a two-dimensional slurry bubble column. Chem Eng Sci1996;51:461929.10.1016/0009-2509(96)00265-5Search in Google Scholar

190. EllenbergerJ, KrishnaR. A unified approach to the scale-up of gas–solid fluidized bed and gas–liquid bubble column reactors. Chem Eng Sci1994;49:5391411.10.1016/0009-2509(94)00274-6Search in Google Scholar

191. KrishnaR, EllenbergerJ. A unified approach to the scale-up of fluidized multiphase reactors. Trans IChemE1995;73:21721.Search in Google Scholar

192. RadosN, Al-DahhanMH, DudukovicMP. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Catal Today2003;79–80:21118.10.1016/S0920-5861(03)00007-5Search in Google Scholar

193. BukurD. Some comments on models for Fischer-Tropsch reaction in slurry bubble column reactors. Chem Eng Sci1983;38:4416.10.1016/0009-2509(83)80161-4Search in Google Scholar

194. BukurD, KumarVR. Effect of catalyst dispersion on performance of slurry bubble column reactors. Chem Eng Sci1986;41:143544. doi:10.1016/0009-2509(86)85229-0.Search in Google Scholar

195. SehabiagueL, LemoineR, BehkishA, HeintzYJ, SanojaM, OukaciR, et al. Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000bbl/day of Fischer–Tropsch liquid hydrocarbons. J Chin Inst Chem Eng2008;39:16979. doi:10.1016/j.jcice.2007.11.003.Search in Google Scholar

196. MarettoC, KrishnaR. Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis. Catal Today1999;52:27989.10.1016/S0920-5861(99)00082-6Search in Google Scholar

197. de SwartJWa,KrishnaR. Simulation of the transient and steady state behaviour of a bubble column slurry reactor for Fischer–Tropsch synthesis. Chem Eng Process Process Intensif2002;41:3547. doi:10.1016/S0255-2701(00)00159-8.Search in Google Scholar

198. ZhengY, GuT. Analytical solution to a model for the startup period of fixed-bed reactors. Chem Eng Sci1996;51:37739.10.1016/0009-2509(96)00225-4Search in Google Scholar

199. FanLS. Gas-liquid-solid fluidization engineering. Butterworths: Massachusetts, USA, 1989.Search in Google Scholar

200. IliutaI, LarachiF, DesvigneD. Multicompartment hydrodynamic model for slurry bubble columns. Chem Eng Sci2008;63:337999.10.1016/j.ces.2008.03.040Search in Google Scholar

201. IliutaI, LarachiF, AnfrayJ, DromardN, SchweichD. Multicomponent multicompartment model for Fischer-Tropsch SCBR. AIChE J2007;53:206283.10.1002/aic.11242Search in Google Scholar

202. EversoleWG, WagnerGH, StackhouseE. Rapid formation of gas bubbles in liquids. Ind Eng Chem1941;33:145962. 1941/11/01. doi:10.1021/ie50383a032.Search in Google Scholar

203. VanKrevelenD, HoftijzerP. Studies of gas-bubble formation-calculation of interfacial area in bubble contactors. Chem Eng Prog1950;46:2935.Search in Google Scholar

204. BenzingRJ, MyersJE. Low frequency bubble formation at horizontal circular orifices. Ind Eng Chem1955;47:208790. 1955/10/01. doi:10.1021/ie50550a022.Search in Google Scholar

205. LeibsonI, HolcombEG, CacosoAG, JacmicJJ. Rate of flow and mechanics of bubble formation from single submerged orifices. I. Rate of flow studies. AIChE J1956;2:296300. doi:10.1002/aic.690020305.Search in Google Scholar

206. LeibsonI, HolcombEG, CacosoAG, JacmicJJ. Rate of flow and mechanics of bubble formation from single submerged orifices. II. Mechanics of bubble formation. AIChE J1956;2:3006. doi:10.1002/aic.690020306.Search in Google Scholar

207. NedeltchevS, SchumpeA. New approaches for theoretical estimation of mass transfer parameters in both gas-liquid and slurry bubble columns. In: M.El-Amin, editor. InTech, 2011:780.10.5772/14721Search in Google Scholar

208. DavidsonJF, SchülerBOG. Bubble formation at an orifice in a viscous liquid. Chem Eng Res Des1997;75: S105S115. doi:10.1016/S0263-8762(97)80008-1.Search in Google Scholar

209. KhuranaAK, KumarR. Studies in bubble formation – III. Chem Eng Sci1969;24:171123. doi:10.1016/0009-2509(69)87036-3.Search in Google Scholar

210. KumarR, KuloorN. The formation of bubbles and drops. Adv Chem Eng1970;8:255368.10.1016/S0065-2377(08)60186-6Search in Google Scholar

211. RamakrishnanS, KumarR, KuloorNR. Studies in bubble formation – I: bubble formation under constant flow conditions. Chem Eng Sci1969;24:73147. doi:10.1016/0009-2509(69)80065-5.Search in Google Scholar

212. SatyanarayanA, KumarR, KuloorNR. Studies in bubble formation—II bubble formation under constant pressure conditions. Chem Eng Sci1969;24:74961. doi:10.1016/0009-2509(69)80066-7.Search in Google Scholar

213. WraithAE. Two stage bubble growth at a submerged plate orifice. Chem Eng Sci1971;26:165971. doi:10.1016/0009-2509(71)86055-4.Search in Google Scholar

214. ParkY, Lamont TylerA, de NeversN. The chamber orifice interaction in the formation of bubbles. Chem Eng Sci1977;32:90716. doi:10.1016/0009-2509(77)80077-8.Search in Google Scholar

215. AcharyaA, UlbrechtJJ. Note on the influence of viscoelasticity on the coalescence rate of bubbles and drops. AIChE J1978;24:34851. doi:10.1002/aic.690240227.Search in Google Scholar

216. RabigerN, VogelpohlA. Bubble formation and its movement in Newtonian and non-Newtonian liquids. In: CheremisinoffNP, editor. Encyclopaedia of fluid mechanics. Houston: Gulf Publishing, 1986:59.Search in Google Scholar

217. RiceRG, LakhaniNB. Bubble formation at a puncture in a submerged rubber membrane. Chem Eng Commun1983;24:21534. doi:10.1080/00986448308940083.Search in Google Scholar

218. GaddisES, VogelpohlA. Bubble formation in quiescent liquids under constant flow conditions. Chem Eng Sci1986;41:97105. doi:10.1016/0009-2509(86)85202-2.Search in Google Scholar

219. TsugeH, HibinoS-I. Bubble formation from an orifice submerged in liquids. Chem Eng Commun1983;22:6379. 1983/07/01. doi:10.1080/00986448308940046.Search in Google Scholar

220. TsugeH, NakajimaY, TerasakaK. Behavior of bubbles formed from a submerged orifice under high system pressure. Chem Eng Sci1992;47:327380. doi:10.1016/0009-2509(92)85035-A.Search in Google Scholar

221. TsugeH, TanakaY, TerasakaK, MatsueH. Bubble formation in flowing liquid under reduced gravity. Chem Eng Sci1997;52:36716. doi:10.1016/S0009-2509(97)00213-3.Search in Google Scholar

222. TsugeH, DinU,P, KammelR. Bubble formation from a vertically downward facing nozzle in liquids and molten metals. J Chem Eng Jpn1986;19:32630. doi:10.1252/jcej.19.326.Search in Google Scholar

223. SadaE, KatohS, YoshiiH, TanakaT. Bubble formation in molten sodium nitrate. Ind Eng Chem Process Des Dev1986;25:8389. 1986/07/01. doi:10.1021/i200034a043.Search in Google Scholar

224. WilkinsonPM, Van DierendonckLL. A theoretical model for the influence of gas properties and pressure on single-bubble formation at an orifice. Chem Eng Sci1994;49:142938. doi:10.1016/0009-2509(93)E0024-7.Search in Google Scholar

225. PamperinO, RathH-J. Influence of buoyancy on bubble formation at submerged orifices. Chem Eng Sci1995;50:300924. doi:10.1016/0009-2509(95)00140-Z.Search in Google Scholar

226. JamialahmadiM, ZehtabanMR, Müller-SteinhagenH, SarrafiA, SmithJM. Study of bubble formation under constant flow conditions. Chem Eng Res Des2001;79:52332. doi:10.1205/02638760152424299.Search in Google Scholar

227. AkitaK, YoshidaF. Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns. Ind Eng Chem Process Des Dev1974;13:8491.10.1021/i260049a016Search in Google Scholar

228. HinzeJO. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J1955;1:28995. doi:10.1002/aic.690010303.Search in Google Scholar

229. LinTJ, TsuchiyaK, FanLS. Bubble flow characteristics in bubble columns at elevated pressure and temperature. AIChE J1998;44:54560.10.1002/aic.690440306Search in Google Scholar

230. LevichVG. Physicochemical hydrodynamics: (by) veniamin G. Levich.Transl. by Scripta Technical, Inc. Prentice-Hall: New Jersey, USA, 1962.Search in Google Scholar

231. LuoX, LeeDJ, LauR, YangG, FanL-S. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE J1999;45:66580. doi:10.1002/aic.690450402.Search in Google Scholar

232. KrishnaR, De SwartJWA, HennephofDE, EllenbergerJ, HoefslootHCJ. Influence of increased gas density on hydrodynamics of bubble-column reactors. AIChE J1994;40:11219. doi:10.1002/aic.690400113.Search in Google Scholar

233. LinTJ, TsuchiyaK, FanL-S. On the measurements of regime transition in high-pressure bubble columns. Can J Chem Eng1999;77:3704. doi:10.1002/cjce.5450770224.Search in Google Scholar

234. Lozano-BlancoG, ThybautJW, SurlaK, GaltierP, MarinGB. Simulation of a slurry-bubble column reactor for Fischer-Tropsch synthesis using single-event microkinetics. AIChE J2009;55:215970. doi:10.1002/aic.11786.Search in Google Scholar

235. AhónVR, CostaEF, MonteagudoJEP, FontesCE, BiscaiaEC, LagePLC. A comprehensive mathematical model for the Fischer–Tropsch synthesis in well-mixed slurry reactors. Chem Eng Sci2005;60:67794. doi:10.1016/j.ces.2004.08.039.Search in Google Scholar

236. WangY, FanW, LiuY, ZengZ, HaoX, ChangM, et al. Modeling of the Fischer–Tropsch synthesis in slurry bubble column reactors. Chem Eng Process Process Intensif2008;47:2228. doi:10.1016/j.cep.2007.02.011.Search in Google Scholar

237. de SwartJWA, KrishnaR. Simulation of the transient and steady state behavior of a bubble column slurry reactor for Fischer-Tropsch synthesis. Chem Eng Process2002;41:3547.10.1016/S0255-2701(00)00159-8Search in Google Scholar

238. StokesGG. On the effect of the internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society. 1851;9:8.Search in Google Scholar

239. DumitrescuDT. Strömung an einer luftblase im senkrechten rohr. ZAMM J Appl Math Mech/Z Angew Math Mech1943;23:13949. doi:10.1002/zamm.19430230303.Search in Google Scholar

240. PeeblesFN, GarberHJ. Studies on the motion of gas bubbles in liquids. Chem Eng Prog1953;49:88.Search in Google Scholar

241. HabermanWL, MortonRK. An experimental study of bubbles moving in liquids. Trans Am Soc Civil Eng1956;121:22750.10.1061/TACEAT.0007317Search in Google Scholar

242. HarmathyTZ. Velocity of large drops and bubbles in media of infinite or restricted extent. AIChE J1960;6:2818. doi:10.1002/aic.690060222.Search in Google Scholar

243. AngelinoH. Hydrodynamique des grosses bulles dans les liquides visqueux. Chem Eng Sci1966;21:54150.10.1016/0009-2509(66)85068-6Search in Google Scholar

244. MendelsonHD. The prediction of bubble terminal velocities from wave theory. AIChE J1967;13:2503. doi:10.1002/aic.690130213.Search in Google Scholar

245. GraceJR, WairegiT, NguyenTH. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Trans Inst Chem Eng1976;54:16773.Search in Google Scholar

246. LehrerIH. A rational terminal velocity equation for bubbles and drops at intermediate and high Reynolds numbers. J Chem Eng Jpn1976;9:23740. doi:10.1252/jcej.9.237.Search in Google Scholar

247. CliftR, GraceJR, WeberME. Bubbles, drops, and particles. Academic Press: New York, USA, 1978.Search in Google Scholar

248. FukumaM, MuroyamaK, YasunishiA. Properties of bubble swarm in a slurry bubble column. J Chem Eng Jpn1987;20:2833.10.1252/jcej.20.28Search in Google Scholar

249. NickensHV, YannitellDW. The effects of surface tension and viscosity on the rise velocity of a large gas bubble in a closed, vertical liquid-filled tube. Int J Multiphase Flow1987;13:5769. doi:10.1016/0301-9322(87)90007-3.Search in Google Scholar

250. JamialahmadiM, Müller-SteinhagenH. Effect of solid particles on gas hold-up in bubble columns. Can J Chem Eng1991;69:3903.10.1002/cjce.5450690149Search in Google Scholar

251. KaramanevDG. Rise of gas bubbles in quiescent liquids. AIChE J1994;40:141821. doi:10.1002/aic.690400814.Search in Google Scholar

252. ManeriCC. New look at wave analogy for prediction of bubble terminal velocities. AIChE J1995;41:4817. doi:10.1002/aic.690410306.Search in Google Scholar

253. NguyenAV. Prediction of bubble terminal velocities in contaminated water. AIChE J1998;44:22630. doi:10.1002/aic.690440124.Search in Google Scholar

254. KrishnaR, UrseanuMI, van BatenJM, EllenbergerJ. Rise velocity of a swarm of large gas bubbles in liquids. Chem Eng Sci1999;54:17183.10.1016/S0009-2509(98)00245-0Search in Google Scholar

255. YangG, LuoX, LauR, FanL. Heat-transfer characteristics in slurry bubble columns at elevated pressures and temperatures. Ind Eng Chem Res2000;39:256877. doi:10.1021/ie990774s.Search in Google Scholar

256. RodrigueD. Generalized correlation for bubble motion. AIChE J2001;47:3944. doi:10.1002/aic.690470106.Search in Google Scholar

257. VermeerD, KrishnaR. Hydrodynamics and mass transfer in bubble columns in operating in the churn-turbulent regime. Ind Eng Chem Res1981:47582.10.1021/i200014a014Search in Google Scholar

258. SternD, BellAT, HeinemannH. Effects of mass transfer on the performance of slurry reactors used for Fischer-Tropsch synthesis. Chem Eng Sci1983;38:597605.10.1016/0009-2509(83)80119-5Search in Google Scholar

259. IngaJR, MorsiBI. Effect of catalyst loading on gas-liquid mass transfer in a slurry reactor: a statistical experimental approach. Can J Chem Eng1997;75:87281. doi:10.1002/cjce.5450750507.Search in Google Scholar

260. LemoineR, BehkishA, MorsiBI. Hydrodynamic and mass transfer characteristics in organic liquid mixtures in a large-scale bubble column reactor for the toluene oxidation process. Ind Eng Chem Process Des Dev2004;43:6195212.10.1021/ie0400797Search in Google Scholar

261. LemoineR, MorsiBI. Hydrodynamic and mass transfer parameters in agitated reactors part II: gas-holdup, sauter mean bubble diameters, volumetric mass transfer coefficients, gas-liquid interfacial areas, and liquid-side mass transfer coefficients. Int J Chem Reactor Eng2005;3:1166.10.2202/1542-6580.1166Search in Google Scholar

262. HuffGA, SatterfieldCN. Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst. Ind Eng Chem Process Des Dev1984;23:696705.10.1021/i200027a012Search in Google Scholar

263. SauerT, HempelD-C. Fluid dynamics and mass transfer in a bubble column with suspended particles. Chem Eng Technol1987;10:1809.10.1002/ceat.270100123Search in Google Scholar

264. GuoYX, RathorMN, TiHC. Hydrodynamics and mass transfer studies in a novel external-loop airlift reactor. Chem Eng J1997;67:20514. doi:10.1016/S1385-8947(97)00043-0.Search in Google Scholar

265. GestrichW, EsenweinH, KraussW. Der flüssigkeitsseitige stoffübergangskoeffizient in blasenschichten. Chem Ing Tech1976;48:399407. doi:10.1002/cite.330480509.Search in Google Scholar

266. FukumaM, MuroyamaK, YasunishiA. Specific gas-liquid interfacial area and liquid-phase mass transfer coefficient in a slurry bubble column. J Chem Eng Jpn1987;20:3214.10.1252/jcej.20.321Search in Google Scholar

267. SalvacionJ, MurayamaM. Effects of alcohols on gas holdup and volumetric liquid-phase mass transfer coefficient in gel-particle-suspended bubble column. J Chem Eng Jpn1995;28:43442.10.1252/jcej.28.434Search in Google Scholar

268. CalderbankPH, Moo-YoungMB. The continuous phase heat and mass transfer properties of dispersions. Chem Eng Sci1995;50:392134. doi:10.1016/0009-2509(96)81823-9.Search in Google Scholar

269. VázquezG, AlvarezE, NavazaJM, RendoR, RomeroE. Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 °C to 50 °C. J Chem Eng Data1997;42:579. 1997/01/01. doi:10.1021/je960238w.Search in Google Scholar

270. DewesI, SchumpeA. Gas density effect on mass transfer in the slurry bubble column. Chem Eng Sci1997;52:41059. doi:10.1016/S0009-2509(97)00252-2.Search in Google Scholar

271. YangW, WangJ, JinY. Mass transfer characteristics of syngas components in slurry system at industrial conditions. Chem Eng Technol2001;24:6517. doi:10.1002/1521-4125(200106)24:6651::aid-ceat651.3.0.co;2-x.Search in Google Scholar

272. KölbelH, SiemesW, MaasR, MüllerK. Wärmeübergang an blasensäulen. Chem Ing Tech1958;30:4004. doi:10.1002/cite.330300606.Search in Google Scholar

273. KölbelH, BorchersE, MartinsJ. Wärmeübergang in blasensäulen III. Messungen an gasdurchströmten suspensionen. Chem Ing Tech1960;32:848.10.1002/cite.330320203Search in Google Scholar

274. KastW. Untersuchungen zum wärmeübergang in blasensäulen. Chem Ing Tech1963;35:7858. doi:10.1002/cite.330351106.Search in Google Scholar

275. BurkelW. Auslegung von gasverteilern und gasgehalt in blasensäulen. Chem Ing Tech1974;46:205205.10.1002/cite.330460510Search in Google Scholar

276. ShaykhutdinovA, BakirovN, UsmanovA. Determination and mathematical correlation of heat transfer coefficient under conditions of bubble flow, cellular and turbulent foam. Int Chem Eng J1975;11:6415.Search in Google Scholar

277. NishikawaM, KatoH, HashimotoK. Heat transfer in aerated tower filled with non-Newtonian liquid. Ind Eng Chem Process Des Dev1977;16:1337. 1977/01/01. doi:10.1021/i260061a607.Search in Google Scholar

278. BakerCGJ, ArmstrongER, BergougnouMA. Heat transfer in three-phase fluidized beds. Powder Technol1978;21:195204. doi:10.1016/0032-5910(78)80089-8.Search in Google Scholar

279. LouisiY. Ermittlung von fluiddynamischen kenngröβen fur die Fischer-Tropsch-synthese in blasensäulenreaktoren. Technical University of Berlin: Berlin, Germany, 1979.Search in Google Scholar

280. DeckwerWD. On the mechanism of heat transfer in bubble column reactors. Chem Eng Sci1980;35:13416. doi:10.1016/0009-2509(80)85127-X.Search in Google Scholar

281. DeckwerW-D, LouisiY, RalekM, ZaidiA. Hydrodynamic properties of the Fischer-Tropsch slurry process. Ind Eng Chem Process Des Dev1980;19:699708.10.1021/i260076a032Search in Google Scholar

282. JoshiJB, SharmaMM, ShahYT, SinghCPP, AllyM, KlinzingGE. Heat transfer in multiphase contactors. Chem Eng Commun1980;6:25771. 1980/01/01. doi:10.1080/00986448008912534.Search in Google Scholar

283. KatoY, UchidaK, KagoT, MorookaS. Liquid holdup and heat transfer coefficient between bed and wall in liquid solid and gas-liquid-solid fluidized beds. Powder Technol1981;28:1739. doi:10.1016/0032-5910(81)87040-4.Search in Google Scholar

284. ZehnerP. Momentum, mass and heat transfer in bubble columns1. Flow model of the bubble column and flow velocities. Verfahrenstechnik1982;16:34751.Search in Google Scholar

285. ZehnerP. Impuls-, stoff- und wärmetransport in blasensäulen. Chem Ing Tech1982;54:24851. doi:10.1002/cite.330540311.Search in Google Scholar

286. WendtR. Untersuchungen zum wärmeübergang an einzelrohren und querangeströmten rohrbündelwärmeaustauschern in blasensäulenreaktoren. Technical University of Dortmund: Dortmund, Germany, 1983.10.1002/cite.330561221Search in Google Scholar

287. MichaelR, ReichertKH. Polymerisation von ethylen in blasensäulenreaktoren–untersuchungen zum stoffübergang und gasgehalt. Chem Ing Tech1983;55:5645.10.1002/cite.330550714Search in Google Scholar

288. ChiuT-M, ZieglerEN. Heat transfer in three-phase fluidized beds. AIChE J1983;29:67785. doi:10.1002/aic.690290424.Search in Google Scholar

289. KangY, SuhIS, KimSD. Heat transfer characteristics of three-phase fluidized beds, in Proc. PAChE III, Seoul, Korea, 1983: 1.Search in Google Scholar

290. MuroyamaK, FukumaM, YasunishiA. Wall-to-bed heat transfer coefficient in gas–liquid–solid fluidized beds. Can J Chem Eng1984;62:199208. doi:10.1002/cjce.5450620207.Search in Google Scholar

291. ChiuT-M, ZieglerEN. Liquid holdup and heat transfer coefficient in liquid-solid and three-phase fluidized beds. AIChE J1985;31:15049. doi:10.1002/aic.690310913.Search in Google Scholar

292. KangY, SuhI, KimS. Heat transfer characteristics of three phase fluidized beds. Chem Eng Commun1985;34:113.10.1080/00986448508911182Search in Google Scholar

293. Saberian-BroudjenniM, WildG, MidouxN, CharpentierJC. Contribution à l‘étude du transfert de chaleur à la paroi dans les récteurs à lit fluidisé gaz-liquide-solide à faible vitesse de liquide. Can J Chem Eng1985;63:55364. doi:10.1002/cjce.5450630405.Search in Google Scholar

294. SuhIS, JinGT, KimSD. Heat transfer coefficients in three phase fluidized beds. Int J Multiphase Flow1985;11:2559. doi:10.1016/0301-9322(85)90049-7.Search in Google Scholar

295. KimSD, KangY, KwonHK. Heat transfer characteristics in two‐and three‐phase slurry‐fluidized beds. AIChE J1986;32:1397400.10.1002/aic.690320820Search in Google Scholar

296. MuroyamaK, FukumaM, YasunishiA. Wall-to-bed heat transfer in liquid–solid and gas–liquid–solid fluidized beds part II: gas–liquid–solid fluidized beds. Can J Chem Eng1986;64:40918. doi:10.1002/cjce.5450640308.Search in Google Scholar

297. MuroyamaK, FukumaM, YasunishiA. Wall-to-bed heat transfer in liquid–solid and gas–liquid–solid fluidized beds part I: liquid–solid fluidized beds. Can J Chem Eng1986;64:399408. doi:10.1002/cjce.5450640307.Search in Google Scholar

298. HatateY, TajiriS, FujitaT, FukumotoT, IkariA, HanoT. Heat transfer coefficient in three-phase vertical upflows of gas-liquid-fine solid particle systems. J Chem Eng Jpn1987;20:56874.10.1252/jcej.20.568Search in Google Scholar

299. KorteH. Heat transfer in bubble columns with and without internals, PhD Thesis, University of Dortmund, 1987.Search in Google Scholar

300. KorteHJ. Wärmeübergang in blasensäulen mit und ohne einbauten. Technical University of Dortmund: Dortmund, Germany, 1987.Search in Google Scholar

301. MagiliotouM, ChenY-M, FanL-S. Bed-immersed object heat transfer in a three-phase fluidized bed. AIChE J1988;34:10437. doi:10.1002/aic.690340620.Search in Google Scholar

302. KimJO, ParkDH, KimSD. Heat transfer and wake characteristics in three-phase fluidized beds with floating bubble breakers. Chem Eng Process Process Intensif1990;28:11319. doi:10.1016/0255-2701(90)80007-R.Search in Google Scholar

303. ZaidiA, DeckwerWD, MraniA, BenchekchouB. Hydrodynamics and heat transfer in three-phase fluidized beds with highly viscous pseudoplastic solutions. Chem Eng Sci1990;45:22358. doi:10.1016/0009-2509(90)80100-S.Search in Google Scholar

304. SaxenaS, RaoN, SaxenaA. Estimation of heat transfer coefficient for immersed surfaces in bubble columns involving fine powders. Powder Technol1990;63:197202.10.1016/0032-5910(90)80042-WSearch in Google Scholar

305. KumarS, FanL-S. Heat-transfer characteristics in viscous gas-liquid and gas-liquid-solid systems. AIChE J1994;40:74555. doi:10.1002/aic.690400502.Search in Google Scholar

306. KantarciN, UlgenKO, BorakF. A study on hydrodynamics and heat transfer in a bubble column reactor with yeast and bacterial cell suspensions. Can J Chem Eng2005;83:76473. doi:10.1002/cjce.5450830417.Search in Google Scholar

307. PatnailKSKR. Heat transfer coefficients in three-phase sparged reactors: a unified correlation, in Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, 2007.Search in Google Scholar

308. JhawarAK, PrakashA. Influence of bubble column diameter on local heat transfer and related hydrodynamics. Chem Eng Res Des2011;89:19962002. doi:10.1016/j.cherd.2010.11.019.Search in Google Scholar

309. HuletC, ClementP, TochonP, SchweichD, DromardN, AnfrayJ. Literature review on heat transfer in two-and three-phase bubble columns. Int J Chem Reactor Eng2009;7:1–94.10.2202/1542-6580.1804Search in Google Scholar

310. KölbelH, RalekM. The Fischer-Tropsch synthesis in the liquid phase. Catal Rev Sci Eng1980;21:22574.10.1080/03602458008067534Search in Google Scholar

311. BernemannK. On the hydrodynamics and mixing of the liquid phase in bubble columns with longitudinal tube bundles, PhD Thesis, University of Dortmund, 1989.Search in Google Scholar

312. SaxenaS, RaoN, ThimmapuramP. Gas phase holdup in slurry bubble columns for two-and three-phase systems. Chem Eng J1992;49:1519.10.1016/0300-9467(92)80051-BSearch in Google Scholar

313. PradhanAK, ParichhaRK, DeP. Gas hold-up in non-Newtonian solutions in a bubble column with internals. Can J Chem Eng1993;71:46871. doi:10.1002/cjce.5450710319.Search in Google Scholar

314. ChenJ, LiF, DegaleesanS, GuptaP, Al-DahhanMH, DudukovicMP, et al. Fluid dynamic parameters in bubble columns with internals. Chem Eng Sci1999;54:218797. doi:10.1016/S0009-2509(99)00003-2.Search in Google Scholar

315. ForretA, SchweitzerJ-M, GauthierT, KrishnaR, SchweichD. Liquid dispersion in large diameter bubble columns, with and without internals. Can J Chem Eng2003;81:3606. doi:10.1002/cjce.5450810304.Search in Google Scholar

316. Larachi, DesvigneD, DonnatL, SchweichD. Simulating the effects of liquid circulation in bubble columns with internals. Chem Eng Sci2006;61:4195206. doi:10.1016/j.ces.2006.01.053.Search in Google Scholar

317. YoussefAA, Al-DahhanMH. Impact of internals on the gas holdup and bubble properties of a bubble column. Ind Eng Chem Res2009;48:800713. 2009/09/02. doi:10.1021/ie900266q.Search in Google Scholar

318. YoussefA. Fluid dynamics and scale-up of bubble columns with internals, 2010.Search in Google Scholar

319. BlassE, CorneliusW. The residence time distribution of solid and liquid in multistage bubble columns in the cocurrent flow of gas, liquid and suspended solid. Int J Multiphase Flow1977;3:45969. doi:10.1016/0301-9322(77)90022-2.Search in Google Scholar

320. KemounA, RadosN, LiF, Al-DahhanMH, DudukovicMP, MillsPL, et al. Gas holdup in a trayed cold-flow bubble column. Chem Eng Sci2001;56:1197205. doi:10.1016/S0009-2509(00)00340-7.Search in Google Scholar

321. WesterterpKR, van SwaaijWPM, BeenackersAACM, KramersH. Chemical reactor design and operation. Wiley: New York, USA, 1984.Search in Google Scholar

322. MashelkarR, SharmaM. Mass transfer in bubble and packed bubble columns. Trans Inst Chem Eng1970;48:T162.Search in Google Scholar

323. PalaskarSN, DeJK, PanditAB. Liquid phase RTD studies in sectionalized bubble column. Chem Eng Technol2000;23:619. doi:10.1002/(sici)1521-4125(200001)23:161::aid-ceat61.3.0.co;2-k.Search in Google Scholar

324. NosierSA. Solid-liquid mass transfer at gas sparged tube bundles. Chem Eng Technol2003;26:11514. doi:10.1002/ceat.200301834.Search in Google Scholar

325. AlvaréJ, Al-DahhanMH. Liquid phase mixing in trayed bubble column reactors. Chem Eng Sci2006;61:181935. doi:10.1016/j.ces.2005.10.015.Search in Google Scholar

326. SekizawaT, KubotaH. Liquid mixing in multistage bubble columns. J Chem Eng Jpn1975;7:4416. doi:10.1252/jcej.7.441.Search in Google Scholar

327. DoshiYK, PanditAB. Effect of internals and sparger design on mixing behavior in sectionalized bubble column. Chem Eng J2005;112:11729. doi:10.1016/j.cej.2005.07.004.Search in Google Scholar

328. KawasakiH, HiranoH, TanakaH. Effects of multiple draft tubes with perforated plates on gas holdup and volumetric mass transfer coefficient in a bubble column. J Chem Eng Jpn1994;27:66970. doi:10.1252/jcej.27.669.Search in Google Scholar

329. O’DowdW, SmithDN, RuetherJA, SaxenaSC. Gas and solids behavior in a baffled and unbaffled slurry bubble column. AIChE J1987;33:195970. doi:10.1002/aic.690331204.Search in Google Scholar

330. YamashitaF. Effects of vertical pipe and rod internals on gas holdup in bubble columns. J Chem Eng Jpn1987;20:2046. doi:10.1252/jcej.20.204.Search in Google Scholar

331. BalamuruganV, SubbaraoD, RoyS. Enhancement in gas holdup in bubble columns through use of vibrating internals. Can J Chem Eng2010;88:101020. doi:10.1002/cjce.20362.Search in Google Scholar

332. Aksel’rodL, VorotnikovaNI, KozlovAA. Heat transfer and several aspects of hydrodynamics of bubble beds on sieve trays equipped with tube bundles. Heat Transfer Soviet Res1976;8:2533.Search in Google Scholar

333. ShahY, RatwayC, McIlvriedH. Back-mixing characteristics of a bubble column with vertically suspended tubes. Trans Inst Chem Eng1978;56:10712.Search in Google Scholar

334. GrayD, ElsawyA, TomlinsonG, StiegelGJ, SrivastavaRD. Proceedings of the DOE Liquefaction Contractors’ Review Meeting, 1991:344.Search in Google Scholar

335. MarettoC, KrishnaR. Modelling of a bubble column slurry reactor for Fischer–Tropsch synthesis. Catal Today1999;52:27989.10.1016/S0920-5861(99)00082-6Search in Google Scholar

336. GidaspowD. Multiphase flow and fluidization: continuum and kinetic theory descriptions. Access Online via Elsevier, 1994.Search in Google Scholar

337. GrevskottS, SannæsBH, DudukovićMP, HjarboKW, SvendsenHF. Liquid circulation, bubble size distributions, and solids movement in two- and three-phase bubble columns. Chem Eng Sci1996;51:170313. doi:10.1016/0009-2509(96)00029-2.Search in Google Scholar

338. Mitra-MajumdarD, FaroukB, ShahYT. Hydrodynamic modeling of three-phase flows through a vertical column. Chem Eng Sci1997;52:448597. doi:10.1016/S0009-2509(97)00293-5.Search in Google Scholar

339. RiceRG, TupperainenJMI, HedgeRM. Dispersion and hold-up in bubble columns – comparison of rigid and flexible spargers. Can J Chem Eng1981;59:67787. doi:10.1002/cjce.5450590605.Search in Google Scholar

340. WenCY, FanLT. Models for flow systems and chemical reactors. Dekker: New York, USA, 1975.Search in Google Scholar

341. LevenspielO, FitzgeraldTJ. A warning on the misuse of the dispersion model. Chem Eng Sci1983;38:48991. doi:10.1016/0009-2509(83)80171-7.Search in Google Scholar

342. HattonTA, LightfootEN. Dispersion, mass transfer and chemical reaction in multiphase contactors: part I: theoretical developments. AIChE J1984;30:23543. doi:10.1002/aic.690300210.Search in Google Scholar

343. MyersKJ, DudukovićMP, RamachandranPA. Modelling churn-turbulent bubble columns – I. Liquid-phase mixing. Chem Eng Sci1987;42:230111. doi:10.1016/0009-2509(87)80103-3.Search in Google Scholar

344. RiceRG, LittlefieldMA. Dispersion coefficients for ideal bubbly flow in truly vertical bubble columns. Chem Eng Sci1987;42:204553. doi:10.1016/0009-2509(87)80150-1.Search in Google Scholar

345. ShahYT, StiegelGJ, SharmaMM. Backmixing in gas-liquid reactors. AIChE J1978;24:369400. doi:10.1002/aic.690240302.Search in Google Scholar

346. KaštánekF, SharpDH. Chemical reactors for gas-liquid systems. Ellis Horwood: Chichester, England, 1993.Search in Google Scholar

347. BairdMH, RiceRG. Axial dispersion in large unbaffled columns. Chem Eng J1975;9:1714.10.1016/0300-9467(75)80010-4Search in Google Scholar

348. KolmogorovAN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc Math Phys Sci1991;434:913. doi:10.2307/51980.Search in Google Scholar

349. JoshiJ, SharmaM. A circulation cell model for bubble columns. Chem Eng Res Des1979;57:24451.Search in Google Scholar

350. McHenryKW, WilhelmRH. Axial mixing of binary gas mixtures flowing in a random bed of spheres. AIChE J1957;3:8391. doi:10.1002/aic.690030115.Search in Google Scholar

351. OhkiY, InoueH. Longitudinal mixing of the liquid phase in bubble columns. Chem Eng Sci1970;25:116. doi:10.1016/0009-2509(70)85016-3.Search in Google Scholar

352. KatoY, NishiwakiA. Longitudinal dispersion coefficient of a liquid in a bubble column. Int Chem Eng1972;12:1827.Search in Google Scholar

353. TowellGD, AckermanGH. Axial mixing of liquid and gas in large bubble column reactor, in Proceedings of 2nd International Symposium Chem. React. Engng. Amsterdam, The Netherlands, 1972, pp. B3.1B3.13.Search in Google Scholar

354. BaduraR, DeckwerW-D, WarneckeH-J, LangemannH. Durchmischung in blasensäulen. Chem Ing Tech1974;46:399399. doi:10.1002/cite.330460909.Search in Google Scholar

355. HikitaH, KikukawaH. Liquid-phase mixing in bubble columns: effect of liquid properties. Chem Eng J1974;8:1917. doi:10.1016/0300-9467(74)85024-0.Search in Google Scholar

356. FieldRW, DavidsonJF. Axial dispersion in bubble columns. Trans Inst Chem Eng1980;58:22836.Search in Google Scholar

357. JoshiJB, ShahYT. Kinetics of organic sulphur removal from coal by oxydesulphurization. Fuel1981;60:61214. doi:10.1016/0016-2361(81)90162-9.Search in Google Scholar

358. RiquartsH-P. Strömungsprofile, impulsaustausch und durchmischung der flüssigen phase in blasensäulen. Chem Ing Tech1981;53:601. doi:10.1002/cite.330530118.Search in Google Scholar

359. MangartzKH, PilhoferT. Interpretation of mass transfer measurements in bubble columns considering dispersion of both phases. Chem Eng Sci1981;36:106977. doi:10.1016/0009-2509(81)80093-0.Search in Google Scholar

360. KawaseY, Moo-YoungM. Liquid phase mixing in bubble columns with Newtonian and non-Newtonian fluids. Chem Eng Sci1986;41:196977. doi:10.1016/0009-2509(86)87113-5.Search in Google Scholar

361. BernemannK. Zur fluiddynamik und zum vermischungsverhalten der flüssigen phase in blasensaulen mit langsangeströmten rohrbu Ph.D. Thesis, University of Dortmund, 1989.Search in Google Scholar

362. SmithDN, RuetherJA. Dispersed solid dynamics in a slurry bubble column. Chem Eng Sci1985;40:74153. doi:10.1016/0009-2509(85)85027-2.Search in Google Scholar

363. FernandesFAN. Modeling and product grade optimization of Fischer−Tropsch synthesis in a slurry reactor. Ind Eng Chem Res2006;45:104757. doi:10.1021/ie0507732.Search in Google Scholar

364. WangT, WangJ, JinY. Slurry reactors for gas-to-liquid processes: a review. Ind Eng Chem Res2007;46:582447.10.1021/ie070330tSearch in Google Scholar

365. de ToledoECV, de SantanaPL, MacielMRW, Maciel FilhoR. Dynamic modelling of a three-phase catalytic slurry reactor. Chem Eng Sci2001;56:605561. doi:10.1016/S0009-2509(01)00260-3.Search in Google Scholar

366. MillsPL, TurnerJR, RamachandranPA, DudukovicMP. The Fischer-Tropsch synthesis in slurry bubble column reactors: analysis of reactor performance using the axial dispersion model. In: NigamKDP and SchumpeA, editors. Three phase sparged reactors. Amsterdam: Gordon and Breach, 1996:33986.Search in Google Scholar

367. IliutaI, LarachiF, AnfrayJ, DromardN, SchweichD. Comparative simulations of cobalt- and iron-based Fischer-Tropsch synthesis slurry bubble column reactors. Ind Eng Chem Res2008;47:38619. 2008/06/01. doi:10.1021/ie701764y.Search in Google Scholar

368. PrakashA. On the effects of syngas composition and water gas shift reaction rate on FT synthesis over iron based catalyst in a slurry reactor. Chem Eng Commun1994;128:14358. 1994/01/01. doi:10.1080/00986449408936242.Search in Google Scholar

369. RadosN, Al-DahhanMH, DudukovićMP. Dynamic modeling of slurry bubble column reactors. Ind Eng Chem Res2005;44:608694. 2005/08/01. doi:10.1021/ie040227t.Search in Google Scholar

370. SongH-S, RamkrishnaD, TrinhS, EspinozaRL, WrightH. Multiplicity and sensitivity analysis of Fischer–Tropsch bubble column slurry reactors: plug-flow gas and well-mixed slurry model. Chem Eng Sci2003;58:275966.10.1016/S0009-2509(03)00125-8Search in Google Scholar

371. SternD, BellAT, HeinemannH. A theoretical model for the performance of bubble-column reactors used for Fischer-Tropsch synthesis. Chem Eng Sci1985;40:166577. doi:10.1016/0009-2509(85)80027-0.Search in Google Scholar

372. TurnerJR, MillsPL. Comparison of axial dispersion and mixing cell models for design and simulation of Fischer-Tropsch slurry bubble column reactors. Chem Eng Sci1990;45:231724.10.1016/0009-2509(90)80111-QSearch in Google Scholar

373. GrundG, SchumpeA, DeckwerWD. Gas-liquid mass transfer in a bubble column with organic liquids. Chem Eng Sci1992;47:350916.10.1016/0009-2509(92)85064-ISearch in Google Scholar

374. KrishnaR, UrseanuMI, van BatenJM, EllenbergerJ. Liquid phase dispersion in bubble columns operating in the churn-turbulent flow regime. Chem Eng J2000;78:4351. doi:10.1016/S1385-8947(99)00167-9.Search in Google Scholar

375. CalderbankP, EvansF, FarleyR, JepsonG, PollA. Catalysis in practice, in Symposium of the Institution of Chemical Engineers, London, 1963.Search in Google Scholar

376. SatterfieldC, HuffG. 25 effects of mass transfer on Fischer-Tropsch synthesis in slurry reactors. Chem Eng Sci1980;35:195202.10.1016/0009-2509(80)80087-XSearch in Google Scholar

377. DeckwerWD, SerpemenY, RalekM, SchmidtB. On the relevance of mass transfer limitations in the Fischer-Tropsch slurry process. Chem Eng Sci1981;36:7734. doi:10.1016/0009-2509(81)85092-0.Search in Google Scholar

378. DeckwerWD, SerpemenY, RalekM, SchmidtB. Modeling the Fischer-Tropsch synthesis in the slurry phase. Ind Eng Chem Process Des Dev1982;21:23141. 1982/04/01. doi:10.1021/i200017a006.Search in Google Scholar

379. KuoJ, SanzoF, GarwoodW, GupteK, LangC, LeibT, et al. Slurry Fischer-Tropsch/mobil two-stage process of converting syngas to high octane gasoline, DOE Contract No. DE-AC22-80PC30022, Final Report, June 1983.10.2172/6838947Search in Google Scholar

380. LeibT, MillsP, LerouJ, TurnerJ. Evaluation of neural networks for simulation of 3-phase bubble-column reactors. Chem Eng Res Des1995;73:6906.Search in Google Scholar

381. IngaJR, MorsiBI. A novel approach for the assessment of the rate-limiting step in Fischer–Tropsch slurry process. Energy Fuels1996;10:56672. 1996/01/01. doi:10.1021/ef950198m.Search in Google Scholar

382. SongH-S, RamkrishnaD, TrinhS, WrightH. Operating strategies for Fischer-Tropsch reactors: A model-directed study. Korean J Chem Eng2004;21:30817. 2004/03/01. doi:10.1007/bf02705414.Search in Google Scholar

383. Iliuta I, Larachi F, Desvigne D. Multicompartment hydrodynamic model for slurry bubble columns. Chem Eng Sci 2008, 63, 3379–99.10.1016/j.ces.2008.03.040Search in Google Scholar

384. GuettelR, TurekT. Comparison of different reactor types for low temperature Fischer-Tropsch synthesis: a simulation study. Chem Eng Sci2009;64:95564.10.1016/j.ces.2008.10.059Search in Google Scholar

385. UeyamaK, MiyauchiT. Properties of recirculating turbulent two phase flow in gas bubble columns. AIChE J1979;25:25866. doi:10.1002/aic.690250207.Search in Google Scholar

386. IshiiM, MishimaK. Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des1984;82:10726. doi:10.1016/0029-5493(84)90207-3.Search in Google Scholar

387. Lahey Jr RT, DrewDA. The three-dimensional time and volume averaged conservation equations of two-phase flow. In: LewinsJ and BeckerM, editors. Advances in nuclear science and technology, vol 20. Plenum Press: New York, USA, 1988: 169. doi:10.1007/978-1-4613-9925-4_1.10.1007/978-1-4613-9925-4_1Search in Google Scholar

388. DrewDA. Mathematical modeling of two-phase flow. Ann Rev Fluid Mech1983;15:26191. doi:10.1146/annurev.fl.15.010183.001401.Search in Google Scholar

389. RanadeVV. Computational flow modeling for chemical reactor engineering. Academic Press: California, USA, 2002.Search in Google Scholar

390. JakobsenHA. Chemical reactor modeling: multiphase reactive flows. Springer: Cham, Switzerland, 2008.Search in Google Scholar

391. DevanathanN, MoslemianD, DudukovicMP. Flow mapping in bubble columns using CARPT. Chem Eng Sci1990;45:228591. doi:10.1016/0009-2509(90)80107-P.Search in Google Scholar

392. De NeversN. Bubble driven fluid circulations. AIChE J1968;14:2226. doi:10.1002/aic.690140205.Search in Google Scholar

393. ZehnerP. Momentum, mass and heat transfer in bubble columns. Part 2. Axial blending and heat transfer. Int Chem Eng1986;26:2935.Search in Google Scholar

394. ZehnerP. Momentum, mass and heat transfer in bubble columns. Part 1. Flow model of the bubble column and liquid velocities. Int Chem Eng1986;26:22.Search in Google Scholar

395. ShahYT. Gas-liquid-solid reactor design. McGraw-Hill: New York, USA, 1979.Search in Google Scholar

396. ChenJ, JamialahmadiM, LiS. Effect of liquid depth on circulation in bubble columns: a visual study. Chem Eng Res Des1989;67:2037.Search in Google Scholar

397. DelnoijE, KuipersJAM, van SwaaijWPM. Dynamic simulation of gas-liquid two-phase flow: effect of column aspect ratio on the flow structure. Chem Eng Sci1997;52:375972. doi:10.1016/S0009-2509(97)00222-4.Search in Google Scholar

398. DelnoijE, LammersFA, KuipersJAM, van SwaaijWPM. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chem Eng Sci1997;52:142958. doi:10.1016/S0009-2509(96)00515-5.Search in Google Scholar

399. MilliesM, MewesD. Calculation of circulating flows in bubble columns. Chem Eng Sci1995;50:2093106. doi:10.1016/0009-2509(94)00500-Q.Search in Google Scholar

400. KumarSB, DevanathanN, MoslemianD, DudukovicMP. Effect of scale on liquid recirculation in bubble columns. Chem Eng Sci1994;49:563752. doi:10.1016/0009-2509(94)00349-1.Search in Google Scholar

401. ClarkNN, AtkinsonCM, FlemmerRLC. Turbulent circulation in bubble columns. AIChE J1987;33:51518. doi:10.1002/aic.690330321.Search in Google Scholar

402. RiceRG, GearyNW. Prediction of liquid circulation in viscous bubble columns. AIChE J1990;36:133948. doi:10.1002/aic.690360907.Search in Google Scholar

403. AndersonKG, RiceRG. Local turbulence model for predicting circulation rates in bubble columns. AIChE J1989;35:51418. doi:10.1002/aic.690350321.Search in Google Scholar

404. LuoH, SvendsenHF. Turbulent circulation in bubble columns from eddy viscosity distributions of single-phase pipe flow. Can J Chem Eng1991;69:138994. doi:10.1002/cjce.5450690622.Search in Google Scholar

405. KumarMM, NatarajanE. CFD simulation for two-phase mixing in 2d fluidized bed. Int J Adv Manuf Technol2009;40:14. doi:10.1007/s00170-008-1875-9.Search in Google Scholar

406. GroenJS, OldemanRGC, MuddeRF, van den AkkerHEA. Coherent structures and axial dispersion in bubble column reactors. Chem Eng Sci1996;51:251120. doi:10.1016/0009-2509(96)00110-8.Search in Google Scholar

407. AdkinsD, ShollenbergerK, O‘HernT, TorczynskiJ. Pressure effects on bubble column flow characteristics, in ANS Proceedings of the 1996 National Heat Transfer Conference, 1996:31825.Search in Google Scholar

408. GearyNW, RiceRG. Circulation and scale-up in bubble columns. AIChE J1992;38:7682. doi:10.1002/aic.690380108.Search in Google Scholar

409. FreedmanW. Hold-up and liquid circulation in bubble columns. Trans Inst Chem Eng1969;47:25162.Search in Google Scholar

410. RietemaK, OtengrafSPP. Laminar liquid circulation and bubble street formation in a gas-liquid system. Trans Inst Chem Eng1970;48:5462.Search in Google Scholar

411. RietemaK. Science and technology of dispersed two-phase systems – I and II. Chem Eng Sci1982;37:112550.10.1016/0009-2509(82)85058-6Search in Google Scholar

412. WhalleyP, DavidsonJF. Liquid circulation in bubble columns, in Symposium on Multi-phase Flow Systems, Institute of Chemical Engineering Symposium Series, 1974.Search in Google Scholar

413. JoshiJ. Axial mixing in multiphase contactors– a unified correlation. Trans Inst Chem Eng1980;58:15564.Search in Google Scholar

414. ClarkNN, Van EgmondJW, NebioloEP. The drift-flux model applied to bubble columns and low velocity flows. Int J Multiphase Flow1990;16:26179. doi:10.1016/0301-9322(90)90058-Q.Search in Google Scholar

415. GascheHE, EdingerC, KömpelH, HofmannH. Hydrodynamics in bubble columns. Chem Eng Process Process Intensif1989;26:1019. doi:10.1016/0255-2701(89)90002-0.Search in Google Scholar

416. GearyNW, RiceRG. Circulation in bubble columns: corrections for distorted bubble shape. AIChE J1991;37:15934. doi:10.1002/aic.690371018.Search in Google Scholar

417. GrienbergerJ, HofmannH. Investigations and modelling of bubble columns. Chem Eng Sci1992;47:221520. doi:10.1016/0009-2509(92)87037-Q.Search in Google Scholar

418. SvendsenHF, JakobsenHA, TorvikR. Local flow structures in internal loop and bubble column reactors. Chem Eng Sci1992;47:3297304. doi:10.1016/0009-2509(92)85038-D.Search in Google Scholar

419. RanadeVV. Flow in bubble columns: some numerical experiments. Chem Eng Sci1992;47:185769. doi:10.1016/0009-2509(92)80304-U.Search in Google Scholar

420. SokolichinA, EigenbergerG. Gas–liquid flow in bubble columns and loop reactors: part I. Detailed modelling and numerical simulation. Chem Eng Sci1994;49:573546. doi:10.1016/0009-2509(94)00289-4.Search in Google Scholar

421. MilliesM. Fluiddynamik, vermischung und stoffübertragung in zirkulationszellen in blasensäulen Ph.D. Thesis, University of Hannover, 1992.Search in Google Scholar

422. HamidipourM, ChenJ, LarachiF. CFD study on hydrodynamics in three-phase fluidized beds – application of turbulence models and experimental validation. Chem Eng Sci2012;78:16780. doi:10.1016/j.ces.2012.05.016.Search in Google Scholar

423. PanneerselvamR, SavithriS, SurenderGD. CFD simulation of hydrodynamics of gas–liquid–solid fluidised bed reactor. Chem Eng Sci2009;64:111935. doi:10.1016/j.ces.2008.10.052.Search in Google Scholar

424. LiY, ZhangJ, FanL-S. Numerical simulation of gas–liquid–solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior. Chem Eng Sci1999;54:51017. doi:10.1016/S0009-2509(99)00263-8.Search in Google Scholar

425. GamwoIK, HalowJS, GidaspowD, MostofiR. CFD models for methanol synthesis three-phase reactors: reactor optimization. Chem Eng J2003;93:10312. doi:10.1016/S1385-8947(02)00192-4.Search in Google Scholar

426. Silva Jr JL, MoriED, Soccol Jr R, d’ÁvilaMA, MoriM. Interphase momentum study in a slurry bubble column. Chem Eng Trans2013;32:150712. doi:10.3303/CET1332252.Search in Google Scholar

427. MatosEM, GuirardelloR, MoriM, NunhezJR. Modeling and simulation of a pseudo-three-phase slurry bubble column reactor applied to the process of petroleum hydrodesulfurization. Comput Chem Eng2009;33:111522. doi:10.1016/j.compchemeng.2008.12.011.Search in Google Scholar

428. PanY, BanerjeeS. Numerical simulation of particle interactions with wall turbulence. Phys Fluids (1994–present)1996;8:273355. doi:10.1063/1.869059.Search in Google Scholar

429. JianpingW, ShonglinX. Local hydrodynamics in a gas-liquid-solid three-phase bubble column reactor. Chem Eng J1998;70:814. doi:10.1016/S1385-8947(97)00120-4.Search in Google Scholar

430. FengW, WenJ, FanJ, YuanQ, JiaX, SunY. Local hydrodynamics of gas–liquid-nanoparticles three-phase fluidization. Chem Eng Sci2005;60:688798. doi:10.1016/j.ces.2005.06.006.Search in Google Scholar

431. MatonisD, GidaspowD, BaharyM. CFD simulation of flow and turbulence in a slurry bubble column. AIChE J2002;48:141329. doi:10.1002/aic.690480706.Search in Google Scholar

432. ZhangX, AhmadiG. Eulerian–Lagrangian simulations of liquid–gas–solid flows in three-phase slurry reactors. Chem Eng Sci2005;60:5089104. doi:10.1016/j.ces.2005.04.033.Search in Google Scholar

433. SchallenbergJ, EnßJH, HempelDC. The important role of local dispersed phase hold-ups for the calculation of three-phase bubble columns. Chem Eng Sci2005;60:602733. doi:10.1016/j.ces.2005.02.017.Search in Google Scholar

434. SivaguruK, BegumKMMS, AnantharamanN. Hydrodynamic studies on three-phase fluidized bed using CFD analysis. Chem Eng J2009;155:20714. doi:10.1016/j.cej.2009.07.037.Search in Google Scholar

435. JoshiJ. Computational flow modelling and design of bubble column reactors. Chem Eng Sci2001;56:5893933.10.1016/S0009-2509(01)00273-1Search in Google Scholar

436. MarchisioDL, FoxRO. Multiphase reacting flows: modelling and simulation: modelling and simulation. Springer-Verlag GmbH: Vienna, Austria, 2007.10.1007/978-3-211-72464-4Search in Google Scholar

437. YeohGH, TuJ. Computational techniques for multiphase flows. Elsevier Science: Amsterdam, The Netherlands, 2009.Search in Google Scholar

438. YeohGH, CheungCP, TuJ. Multiphase flow analysis using population balance modeling: bubbles, drops and particles. Elsevier Science: Amsterdam, The Netherlands, 2013.Search in Google Scholar

439. GidaspowD, JiradilokV. Computational techniques: the multiphase CFD approach to fluidization and green energy technologies. Nova Science Publishers: New York, USA, 2009.Search in Google Scholar

440. ChengL, MewesD. Advances in multiphase flow and heat transfer. Bentham Science Publishers: Sharjah, United Arab Emirates, 2012.Search in Google Scholar

441. BeckerS, SokolichinA, EigenbergerG. Gas–liquid flow in bubble columns and loop reactors: part II. Comparison of detailed experiments and flow simulations. Chem Eng Sci1994;49:574762. doi:10.1016/0009-2509(94)00290-8.Search in Google Scholar

442. OeyRS, MuddeRF, van den AkkerHEA. Sensitivity study on interfacial closure laws in two-fluid bubbly flow simulations. AIChE J2003;49:162136. doi:10.1002/aic.690490703.Search in Google Scholar

443. HooshyarN, van OmmenJR, HamersmaPJ, SundaresanS, MuddeRF. Dynamics of single rising bubbles in neutrally buoyant liquid-solid suspensions. Phys Rev Lett2013;110:244501. doi:10.1103/PhysRevLett.110.244501.Search in Google Scholar

444. HooshyarN. Hydrodynamics of structured slurry bubble columns, Ph.D. Dissertation, Delft University of Technology, 2013.Search in Google Scholar

445. ZhangJ, LiY, FanL-S. Numerical studies of bubble and particle dynamics in a three-phase fluidized bed at elevated pressures. Powder Technol2000;112:4656. doi:10.1016/S0032-5910(99)00304-6.Search in Google Scholar

446. TorvikR, SvendsenHF. Modelling of slurry reactors. A fundamental approach. Chem Eng Sci1990;45:232532. doi:10.1016/0009-2509(90)80112-R.Search in Google Scholar

447. TroshkoAA, ZdravistchF. CFD modeling of slurry bubble column reactors for Fisher–Tropsch synthesis. Chem Eng Sci2009;64:892903. doi:10.1016/j.ces.2008.10.022.Search in Google Scholar

448. YatesI, SatterfieldC. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuels1991:16873.10.1021/ef00025a029Search in Google Scholar

449. KulkarniAA, JoshiJB, RamkrishnaD. Determination of bubble size distributions in bubble columns using LDA. AIChE J2004;50:306884. doi:10.1002/aic.10274.Search in Google Scholar

450. BaharyM. Experimental and computational studies of hydrodynamics in three-phase and two-phase fluidized beds, Ph.D. Dissertation, Chemical Engineering, Illinois Institute of Technology, 1994.10.2172/10123398Search in Google Scholar

451. KashiwaBA, GoreRA. A four equation model for multiphase turbulent flow, in the First Joint ASME/JSME Fluids Engineering Conference, 1991.Search in Google Scholar

452. PirontiFF, MedinaVR, CalvoR, SáezAE. Effect of draft tube position on the hydrodynamics of a draft tube slurry bubble column. Chem Eng J BioChem Eng J1995;60:15560. doi:10.1016/0923-0467(95)03004-2.Search in Google Scholar

453. PadialNT, VanderHeydenWB, RauenzahnRM, YarbroSL. Three-dimensional simulation of a three-phase draft-tube bubble column. Chem Eng Sci2000;55:326173. doi:10.1016/S0009-2509(99)00587-4.Search in Google Scholar

454. LinTJ, ReeseJ, HongT, FanLS. Quantitative analysis and computation of two-dimensional bubble columns. AIChE J1996;42:30118. doi:10.1002/aic.690420202.Search in Google Scholar

455. ZhangJ, LiY, FanL-S. Discrete phase simulation of gas–liquid–solid fluidization systems: single bubble rising behavior. Powder Technol2000;113:31026. doi:10.1016/S0032-5910(00)00314-4.Search in Google Scholar

456. DziallasH, MicheleV, HempelDC. Measurement of local phase holdups in a two- and three-phase bubble column. Chem Eng Technol2000;23:87784. doi:10.1002/1521-4125(200010)23:10877::aid-ceat877.3.0.co;2-f.Search in Google Scholar

457. MicheleV, HempelDC. Liquid flow and phase holdup – measurement and CFD modeling for two-and three-phase bubble columns. Chem Eng Sci2002;57:1899908. doi:10.1016/S0009-2509(02)00051-9.Search in Google Scholar

458. RampureMR, BuwaVV, RanadeVV. Modelling of gas-liquid/gas-liquid-solid flows in bubble columns: experiments and CFD simulations. Can J Chem Eng2003;81:692709. doi:10.1002/cjce.5450810348.Search in Google Scholar

459. ChenC, FanL-S. Discrete simulation of gas-liquid bubble columns and gas-liquid-solid fluidized beds. AIChE J2004;50:288301. doi:10.1002/aic.10027.Search in Google Scholar

460. Cartland GloverGM, GeneralisSC. Gas–liquid–solid flow modelling in a bubble column. Chem Eng Process Process Intensif2004;43:11726. doi:10.1016/S0255-2701(03)00009-6.Search in Google Scholar

461. WiemannD, MewesD. Calculation of flow fields in two and three-phase bubble columns considering mass transfer. Chem Eng Sci2005;60:608593. doi:10.1016/j.ces.2005.04.054.Search in Google Scholar

462. van Sint AnnalandM, DeenNG, KuipersJAM. Numerical simulation of gas–liquid–solid flows using a combined front tracking and discrete particle method. Chem Eng Sci2005;60:618898. doi:10.1016/j.ces.2005.04.038.Search in Google Scholar

463. NguyenK-T, HuangS-C. Simulation of hydrodynamic characteristics of glass beads in gas-liquid-solid three phase fluidized beds by computational fluid dynamics. J Eng Technol Educ2007;8:24861.Search in Google Scholar

464. WangF, MaoZ-S, WangY, YangC. Measurement of phase holdups in liquid–liquid–solid three-phase stirred tanks and CFD simulation. Chem Eng Sci2006;61:753550. doi:10.1016/j.ces.2006.08.046.Search in Google Scholar

465. KiaredK, LarachiF, ChaoukiJ, GuyC. Mean and turbulent particle velocity in the fully developed region of a three-phase fluidized bed. Chem Eng Technol1999;22:6839. doi:10.1002/(sici)1521-4125(199908)22:8683::aid-ceat683.3.0.co;2-m.Search in Google Scholar

466. YuYH, KimSD. Bubble-wake model for radial velocity profiles of liquid and solid phases in three-phase fluidized beds. Ind Eng Chem Res2001;40:44639. 2001/10/01. doi:10.1021/ie010025m.Search in Google Scholar

467. CaoC, LiuM, WenJ, GuoQ. Experimental measurement and numerical simulation for liquid flow velocity and local phase hold-ups in the riser of a GLSCFB. Chem Eng Process Process Intensif2009;48:28895. doi:10.1016/j.cep.2008.04.004.Search in Google Scholar

468. MuthiahP, PonnusamyK, RadhakrishnanTK. CFD modeling of flow pattern and phase holdup of three phase fluidized bed contactor. Chem Prod Process Model2009;4:Art. 36. doi:10.2202/1934-2659.1366.Search in Google Scholar

469. O’RourkePJ, ZhaoP, SniderD. A model for collisional exchange in gas/liquid/solid fluidized beds. Chem Eng Sci2009;64:178497. doi:10.1016/j.ces.2008.12.014.Search in Google Scholar

470. JiaX, WenJ, FengW, YuanQ. Local hydrodynamics modeling of a gas−liquid−solid three-phase airlift loop reactor. Ind Eng Chem Res2007;46:521020. 2007/07/01. doi:10.1021/ie061697l.Search in Google Scholar

471. KuroseR, KomoriS. Drag and lift forces on a rotating sphere in a linear shear flow. J Fluid Mech1999;384:183206. doi:10.1017/S0022112099004164.Search in Google Scholar

472. Laı́nS, BröderD, SommerfeldM, GözMF. Modelling hydrodynamics and turbulence in a bubble column using the Euler–Lagrange procedure. Int J Multiphase Flow2002;28:1381407. doi:10.1016/S0301-9322(02)00028-9.Search in Google Scholar

473. TomiyamaA, KataokaI, SakaguchiT. Drag coefficients of bubbles : 1st report, drag coefficients of a single bubble in a stagnant liquid. Trans Jpn Soc Mech Eng B1995;61:235764.10.1299/kikaib.61.2357Search in Google Scholar

474. MeiR, KlausnerJF. Shear lift force on spherical bubbles. Int J Heat Fluid Flow1994;15:625. doi:10.1016/0142-727X(94)90031-0.Search in Google Scholar

475. SnyderMR, KnioOM, KatzJ, Le MaîtreOP. Statistical analysis of small bubble dynamics in isotropic turbulence. Phys Fluids (1994–present)2007;19:065108-1-24. doi:10.1063/1.2729733.Search in Google Scholar

476. TsuchiyaK, FurumotoA, FanL-S, ZhangJ. Suspension viscosity and bubble rise velocity in liquid-solid fluidized beds. Chem Eng Sci1997;52:305366. doi:10.1016/S0009-2509(97)00127-9.Search in Google Scholar

477. AhmadiG, MaD. A thermodynamical formulation for dispersed multiphase turbulent flows – 1: basic theory. Int J Multiphase Flow1990;16:32340. doi:10.1016/0301-9322(90)90062-N.Search in Google Scholar

478. ZhangDZ, VanderHeydenWB. The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows. Int J Multiphase Flow2002;28:80522. doi:10.1016/S0301-9322(02)00005-8.Search in Google Scholar

479. SchillerL, NaumannZ. A drag coefficient correlation. Ztg Ver Dtsch Ing1935;77:31820.Search in Google Scholar

480. VilleJMD. Micromeritics. Pitman Publishing Co: New York, USA, 1948.Search in Google Scholar

481. MorsiS, AlexanderA. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech1972;55:193208. doi:10.1017/S0022112072001806.Search in Google Scholar

482. GarsideJ, Al-DibouniMR. Velocity-voidage relationships for fluidization and sedimentation in solid-liquid systems. Ind Eng Chem Process Des Dev1977;16:20614. doi:10.1021/i260062a008.Search in Google Scholar

483. AchenbachE. Experiments on the flow past spheres at very high Reynolds numbers. J Fluid Mech1972;54:56575. doi:10.1017/S0022112072000874.Search in Google Scholar

484. ArnoldHD. LXXIV. Limitations imposed by slip and inertia terms upon Stoke’s law for the motion of spheres through liquids. Philos Mag Ser 61911;22:75575. 1911/11/01. doi:10.1080/14786441108637174.Search in Google Scholar

485. BaileyAB, HiattJ. Sphere drag coefficients for a broad range of Mach and Reynolds numbers. AIAA J1972;10:143640. 1972/11/01. doi:10.2514/3.50387.Search in Google Scholar

486. BeardKV, PruppacherHR. A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J Atmos Sci1969;26:106672. 1969/09/01.doi:10.1175/1520-0469(1969)0261066:adottv.2.0.co;2.Search in Google Scholar

487. DaviesCN. Definitive equations for the fluid resistance of spheres. Proc Phys Soc1945;57:259.10.1088/0959-5309/57/4/301Search in Google Scholar

488. DennisSCR, WalkerJDA. Calculation of the steady flow past a sphere at low and moderate reynolds numbers. J Fluid Mech1971;48:77189. doi:10.1017/S0022112071001848.Search in Google Scholar

489. GoinKL, LawrenceWR. Subsonic drag of spheres at Reynolds numbers from 200 to 10,000. AIAA J1968;6:9612. doi:10.2514/3.4648.Search in Google Scholar

490. GoldburgA, FlorsheimBH. Transition and Strouhal number for the incompressible wake of various bodies. Phys Fluids (1958–1988)1966;9:4550. doi:10.1063/1.1761531.Search in Google Scholar

491. GunnR, KinzerGD. The terminal velocity of fall for water droplets in stagnant air. J Meteorol1949;6:2438. 1949/08/01.doi:10.1175/1520-0469(1949)0060243:ttvoff.2.0.co;2.Search in Google Scholar

492. HoernerS. Tests of spheres with reference to Reynolds number, turbulence, and surface roughness. Luftfahrtforschung1935;12:4254.Search in Google Scholar

493. IhmeF, Schmidt-TraubH, BrauerH. Theoretische untersuchung über die umströmung und den stoffübergang an kugeln. Chem Ing Tech1972;44:30613. doi:10.1002/cite.330440513.Search in Google Scholar

494. LeClairBP. Viscous flow in multiparticle systems at intermediate Reynolds numbers. McMaster University: ON, Canada, 1970.Search in Google Scholar

495. LiebsterH. üBer den widerstand von kugeln. Ann Phys1927;387:54162. doi:10.1002/andp.19273870405.Search in Google Scholar

496. MasliyahJH. Symmetric flow past orthotropic bodies: single and clusters. University of British Columbia: Vancouver, Canada, 1970.Search in Google Scholar

497. MaxworthyT. Accurate measurements of sphere drag at low reynolds numbers. J Fluid Mech1965;23:36972. doi:10.1017/S0022112065001428.Search in Google Scholar

498. MaxworthyT. Experiments on the flow around a sphere at high Reynolds numbers. J Appl Mech1969;36:598607. doi:10.1115/1.3564723.Search in Google Scholar

499. MillikanCB, KleinAL. The effect of turbulence. Aircr Eng Aerosp Technol1933;5:16974. doi:10.1108/eb029703.Search in Google Scholar

500. MöllerW. Experimentelle untersuchungen zur hydrodynamik der kugel. Hirzel: Stuttgart, Germany, 1937.Search in Google Scholar

501. PettyjohnE, ChristiansenE. Effect of particle shape on free-settling rates of isometric particles. Chem Eng Prog1948;44:15772.Search in Google Scholar

502. PruppacherHR, SteinbergerEH. An experimental determination of the drag on a sphere at low Reynolds numbers. J Appl Phys1968;39:412932. doi:10.1063/1.1656936.Search in Google Scholar

503. RimonY, ChengSI. Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers. Phys Fluids (1958-1988)1969;12:94959. doi:10.1063/1.2163685.Search in Google Scholar

504. RoosFW, WillmarthWW. Some experimental results on sphere and disk drag. AIAA J1971;9:28591. doi:10.2514/3.6164.Search in Google Scholar

505. WooS-W. Simultaneous free and forced convection around submerged cylinders and spheres, 1971.Search in Google Scholar

506. WieselsbergerC. Weitere feststellungen über die gesetze des flüssigkeits- und luftwiderstandes. Phys Z1922;23:21924.Search in Google Scholar

507. MolerusO. A coherent representation of pressure drop in fixed beds and of bed expansion for particulate fluidized beds. Chem Eng Sci1980;35:133140. doi:10.1016/0009-2509(80)85126-8.Search in Google Scholar

508. HeywoodH. Calculation of particle terminal velocities. J Imperial Coll Chem Eng Soc1948;4: 140257.Search in Google Scholar

509. HeywoodH. Uniform and non-uniform motion of particles in fluids, in the Interaction between Fluids and Particles, London, UK, 1962.Search in Google Scholar

510. LappleCE, ShepherdCB. Calculation of particle trajectories. Ind Eng Chem1940;32:60517. 1940/05/01. doi:10.1021/ie50365a007.Search in Google Scholar

511. FlemmerRLC, BanksCL. On the drag coefficient of a sphere. Powder Technol1986;48:21721. doi:10.1016/0032-5910(86)80044-4.Search in Google Scholar

512. TurtonR, LevenspielO. A short note on the drag correlation for spheres. Powder Technol1986;47:836. doi:10.1016/0032-5910(86)80012-2.Search in Google Scholar

513. VlajinacM, CovertEE. Sting-free measurements of sphere drag in laminar flow. J Fluid Mech1972;54:38592. doi:10.1017/S0022112072000746.Search in Google Scholar

514. RosenbrockHH. An automatic method for finding the greatest or least value of a function. Comput J1960;3:17584. doi:10.1093/comjnl/3.3.175.Search in Google Scholar

515. KhanAR, RichardsonJF. The resistance to motion of a solid sphere in a fluid. Chem Eng Commun1987;62:13550. 1987/12/01. doi:10.1080/00986448708912056.Search in Google Scholar

516. HaiderA, LevenspielO. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol1989;58:6370. 5//. doi:10.1016/0032-5910(89)80008-7.Search in Google Scholar

517. WenCY, YuYH. Mechanics of fluidization. Chem Eng Prog Symp Ser1966;62:10011.Search in Google Scholar

518. ErgunS. Fluid flow through packed columns. Chem Eng Prog1952;48:1179–84. doi:10.1021/ie50474a011.Search in Google Scholar

519. RichardsonJF, ZakiWN. Sedimentation and fluidisation: part I. Chem Eng Res Des1997;75:S82S100. doi:10.1016/S0263-8762(97)80006-8.Search in Google Scholar

520. LetzelM, SchoutenJ. Effect of gas density on large bubble holdup in bubble column reactors. AIChE J1998;44:23336.10.1002/aic.690441022Search in Google Scholar

521. JordanU, TerasakaK, KunduG, Schumpea. Mass transfer in high-pressure bubble columns with organic liquids. Chem Eng Technol2002;25:2625. doi:10.1002/1521-4125(200203)25:3262::AID-CEAT262.3.0.CO;2-C.Search in Google Scholar

522. JordanU, SchumpeA. The gas density effect on mass transfer in bubble columns with organic liquids. Chem Eng Sci2001;56:626772.10.1016/S0009-2509(01)00255-XSearch in Google Scholar

523. HughmarkG. Holdup and mass transfer in bubble columns. Ind Eng Chem Process Des Dev1967;6:21820.10.1021/i260022a011Search in Google Scholar

524. ZouR, JiangX, LiB, ZuY, ZhangL. Studies on gas holdup in a bubble column operated at elevated temperatures. Ind Eng Chem Res1988;27:191016. doi:10.1021/ie00082a025.Search in Google Scholar

525. GodboleSP. Study of hydrodynamic and mass transfer characteristics of multiphase bubble column reactor, 1983.Search in Google Scholar

526. HikitaH, AsaiS, TanigawaK, SegawaK, KitaoM. The volumetric liquid-phase mass transfer coefficient in bubble columns. Chem Eng J1981;22:619.10.1016/0300-9467(81)85006-XSearch in Google Scholar

527. KluytmansJHJ, MarkusseAP, KusterBFM, MarinGB, SchoutenJC. Engineering aspects of the aqueous noble metal catalysed alcohol oxidation. Catal Today2000;57:14355. doi:10.1016/S0920-5861(99)00316-8.Search in Google Scholar

528. PohoreckiR, MoniukW, ZdrójkowskiA. Hydrodynamics of a bubble column under elevated pressure. Chem Eng Sci1999;54:518793.10.1016/S0009-2509(99)00238-9Search in Google Scholar

529. KelkarBG, ShahYT. Hydrodynamics and axial mixing in a three-phase bubble column. Effects of slurry properties. Ind Eng Chem Process Des Dev1984;23:30813.10.1021/i200025a021Search in Google Scholar

530. PohoreckiR, MoniukW. Hydrodynamics of a pilot plant bubble column under elevated temperature and pressure. Chem Eng Sci2001;56:116774.10.1016/S0009-2509(00)00336-5Search in Google Scholar

531. ChabotJ, de LasaHI. Gas holdups and bubble characteristics in a bubble column operated at high temperature. Ind Eng Chem Res1993;32:2595601. doi:10.1021/ie00023a023.Search in Google Scholar

532. DewesI, KuksalA, SchumpeA. Gas density effect on mass transfer in three phase sparged reactors. Chem Eng Res Des1995;73:697700.Search in Google Scholar

533. KojimaH, SawaiJ, SuzukiH. Effect of pressure on volumetric mass transfer coefficient and gas holdup in bubble column. Chem Eng Sci1997;52:411116.10.1016/S0009-2509(97)00253-4Search in Google Scholar

534. JinH, YangS, WangM, WilliamsRA. Measurement of gas holdup profiles in a gas liquid cocurrent bubble column using electrical resistance tomography. Flow Meas Instrum2007;18:1916.10.1016/j.flowmeasinst.2007.07.005Search in Google Scholar

535. EickenbuschH, BrunnP-O, Schumpea. Mass transfer into viscous pseudoplastic liquid in large-diameter bubble columns. Chem Eng Process Process Intensif1995;34:47985. doi:10.1016/0255-2701(95)00626-5.Search in Google Scholar

536. MoustiriS, HebrardG, ThakreS, RoustanM. A unified correlation for predicting liquid axial dispersion coefficient in bubble columns. Chem Eng Sci2001;56:10417.10.1016/S0009-2509(00)00320-1Search in Google Scholar

537. GuyC, CarreauPJ, ParisJ, GuyPJCC, ParisJ. Mixing characteristics and gas hold-up of a bubble column. Can J Chem Eng1986;64:2335.10.1002/cjce.5450640104Search in Google Scholar

538. SaxenaSC, ChenZD. Hydrodynamics and heat transfer of baffled and unbaffled slurry bubble column. Rev Chem Eng1994;10:195400.10.1615/IHTC10.5600Search in Google Scholar

539. SaxenaSC, RaoNS, ThimmapuramPR. Gas phase holdup in slurry bubble column for two- and three-phase systems. Chem Eng J1992;49:1519.10.1016/0300-9467(92)80051-BSearch in Google Scholar

540. DeS, GhoshS, ParichhaR, DeP. Gas hold-up in two-phase system with internals. Indian Chem Eng1999;41:11216.Search in Google Scholar

541. JosephS. Hydrodynamic and mass transfer characteristics of a bubble column. University of Pittsburgh: Pittsburgh, USA, 1985.Search in Google Scholar

Published Online: 2015-4-7
Published in Print: 2015-9-1

©2015 by De Gruyter

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2014-0146/html
Scroll to top button