Variational Approach to Impulsive Differential Equations Using the Semi-Inverse Method

Ji-Huan Hea,b
a National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
b Modern Textile Institute, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, China

Reprint requests to J.-H. H.; E-mail: hejihuan@suda.edu.cn

Received April 6, 2011 / revised July 12, 2011

The semi-inverse method is used to establish a variational principle for the Dirichlet boundary value problem with impulses. All the boundary conditions can be obtained as natural conditions by making the variational principle stationary.

Key words: Impulsive; Variational Principle; Semi-Inverse Method.

1. Introduction

Many dynamical systems have an impulsive dynamical behaviour due to abrupt changes at certain instants during the evolution process [1 – 3]; in this paper, we will consider the following Dirichlet impulsive problem:

\begin{align}
- u''(t) + \lambda u(t) &= \sigma(t), \quad t \in [0, T], \\
\Delta u'(t_j) &= d_j, \quad j = 1, 2, 3, \ldots, p, \\
u(0) &= u(T) = 0,
\end{align}

where $0 < t_1 < t_2 < \ldots < t_p < t_{p+1} = T$ and $\Delta u'(t_j)$ is defined as

\[\Delta u'(t_j) = u'(t_j^+) - u'(t_j^-). \]

Nieto and his colleagues established variational principles for various impulsive problems [1 – 3]; in this paper we suggest an alternative approach to the establishment of the variational formulation for the above problem.

2. Semi-Inverse Method

The semi-inverse method [4] is a powerful tool to establish a variational formulation directly from governing equations and boundary/initial conditions. The basic idea of the semi-inverse method is to construct a trial-functional with an unknown function. For the present problem, we can construct a trial-functional in the form

\[J(u) = \int_0^T \left\{ \frac{1}{2} u'^2 + F(u) \right\} dt, \]

where F is an unknown function of u.

There are alternative approaches to construct trial-functionals, see [5 – 10].

Making the functional (5) stationary with respect to u, we have the following stationary condition (Euler–Lagrange equation):

\[-u'' + \frac{\partial F}{\partial u} = 0. \]

Equation (6) should be equivalent to (1); to this end, we set

\[\frac{\partial F}{\partial u} = \lambda u(t) - \sigma(t). \]

From (7), the unknown function F can be identified as

\[F = \frac{1}{2} \lambda u^2 - \sigma u. \]

We, therefore, obtain the following functional:

\[J(u) = \int_0^T \left\{ \frac{1}{2} u'^2 + \frac{1}{2} \lambda u^2 - \sigma u \right\} dt. \]
In order to incorporate the impulsive condition (2) and the boundary condition (3) into the above variational formulation, we construct a trial-functional in the form

\[
J(u) = \int_0^T \left\{ \frac{1}{2} u'^2 + \frac{1}{2} \lambda u'^2 - \sigma u \right\} dt + \sum_{j=1}^p B_j \left. \left(\frac{\partial B_0}{\partial u} \right) \right|_{t_j}
\]

\[+ B_0 \big|_{t=0} + B_T \big|_{t=T},
\]

where \(B_j \) \((j = 0, 1, 2, 3, \ldots, p, p + 1) \) is an unknown continuous function.

Making (10) stationary, we have

\[
\delta J(u) = \int_0^T \left\{ u' \delta u' + \lambda u \delta u - \sigma \delta u \right\} dt
\]

\[+ \sum_{j=1}^p \frac{\partial B_j}{\partial u} \left. \left(\frac{\partial B_0}{\partial u} \right) \right|_{t_j} \delta u |_{t_j} + \frac{\partial B_0}{\partial u} \delta u |_{t=0} + \frac{\partial B_T}{\partial u} \delta u |_{t=T}.
\]

\[
= \int_0^T \left\{ -u'' + \lambda u - \sigma \right\} \delta u dt + \sum_{j=1}^p u' \left. \delta u \right|_{t_j}
\]

\[+ u' \left. \delta u \right|_0 + \sum_{j=1}^p \frac{\partial B_j}{\partial u} \left. \left(\frac{\partial B_0}{\partial u} \right) \right|_{t_j} \delta u |_{t_j} + \frac{\partial B_0}{\partial u} \delta u |_{t=0} + \frac{\partial B_T}{\partial u} \delta u |_{t=T}.
\]

\[
= \int_0^T \left\{ -u'' + \lambda u - \sigma \right\} \delta u dt
\]

\[+ \sum_{j=1}^p \left(u' + \frac{\partial B_j}{\partial u} \right) \left. \delta u \right|_{t_j}
\]

\[+ \left(u' + \frac{\partial B_0}{\partial u} \right) \left. \delta u \right|_{t=0} + \left(u' + \frac{\partial B_T}{\partial u} \right) \left. \delta u \right|_{t=T} = 0.
\]

For any arbitrary \(\delta u \), we have (1) as Euler–Lagrange equation, and the following natural boundary/initial conditions:

\[
\text{J.-H. He - Variational Approach to Impulsive Differential Equations Using the Semi-Inverse Method}
\]

\[\text{at } t = t_0 = 0:\]

\[-u'(0) + \frac{\partial B_0}{\partial u} = 0,\]

\[\text{(12a)}\]

\[\frac{\partial B_0}{\partial u} = 0;\]

\[\text{(12b)}\]

\[\text{at } t = t_j:\]

\[u'(t_j^-) - u'(t_j^+) + \frac{\partial B_j}{\partial u} (t_j) = 0;\]

\[\text{(13)}\]

\[\text{at } t = t_{p+1} = T:\]

\[u'(T) + \frac{\partial B_T}{\partial u} = 0,\]

\[\text{(14a)}\]

\[\frac{\partial B_T}{\partial u} = 0.\]

\[\text{(14b)}\]

In (13), we set

\[
\frac{\partial B_j}{\partial u}(t_j) = d_j
\]

so that it turns out to be (2). From (15), we can identify \(B_j \) as follows:

\[
B_j(t_j) = \int_{t_0}^{u(t_j)} d_j dt.
\]

Equations (12) and (14) should satisfy the boundary condition (3); to this end, we set

\[
B_0 = u'(0)u(0)
\]

\[\text{(17)}\]

and

\[
B_T = -u'(T)u(T).
\]

\[\text{(18)}\]

Please note in above derivation we have used the property \(\int_0^T \sum_{j=0}^{p+1} \int_{t_j}^{t_{j+1}} \), where \(T_0 = 0 \) and \(T_{p+1} = T \).

We, therefore, obtain the following needed variational principle:

\[
J(u) = \int_0^T \left\{ \frac{1}{2} u'^2 + \frac{1}{2} \lambda u'^2 - \sigma u \right\} dt
\]

\[+ \sum_{j=1}^p \int_{t_0}^{u(t_j)} d_j dt + u'(0)u(0) - u'(T)u(T).
\]

\[\text{(19)}\]

It is easy to prove that the stationary conditions of the above functional satisfy (1) – (3).
3. Conclusions

In this paper the semi-inverse method is applied to establish a variational formulation for the Dirichlet boundary value problem with impulses. The method can be extended to other impulsive problems with ease.

Acknowledgement

The work is supported by PAPD (Soochow University), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.