Hydrogen Bonding in MoO$_4$Cl$_2$ · H$_2$O
Determined by Electrostatic Energy Calculations

WERNER H. BAUR
Department of Geological Sciences, University of Illinois, Chicago, Illinois

(Z. Naturforsch. 32h, 1358-1359 [1977]; received July 19, 1977)

Electrostatic Energy Calculations, Bifurcated Hydrogen Bonds

The configuration of least electrostatic energy for the hydrogen atoms in both polytypes of MoO$_4$Cl$_2$ · H$_2$O was obtained by systematic variation of the orientations of the water molecules. The internal geometry of the H$_2$O group was kept constant throughout the variation. The hydrogen bonds are of the bifurcated type: O(w) · · · H(w) · · · Cl

Recently SCHRODER1 proposed to discriminate between different hydrogen bonding arrangements in the two polytypes of MoO$_4$Cl$_2$ · H$_2$O2,3 by calculating the electrostatic lattice energy for three different hydrogen atom positions in the Pmn2_1 structure2 and for two alternative arrangements in the Pmnb structure3. Such an approach can lead to false conclusions if none of the alternatives corresponds to the extreme value of the electrostatic lattice energy.

It is possible to find the position of least electrostatic energy by varying systematically the orientation of the water molecules while keeping the dimensions of the molecules themselves constant4. It was found that 28 hydrogen atom positions in 6 hydrates calculated in this way agreed on the average within 0.09 Å with positions determined by neutron diffraction4. In several cases predicted hydrogen atom positions have been subsequently verified by neutron diffraction and by nuclear magnetic resonance5.

In both polytypes the oxygen atoms of the water molecule, O(1), are located on mirror planes. The positions of the hydrogen atoms were varied by rotation of the plane of the water molecule normal to this mirror plane. The dimensions of the water molecule were assumed to be O(w) · · · H(w) 0.96 Å and 0(w) · · · H(w) · · · H(w) 109° corresponding to the mean of these values averaged from 81 water molecules determined by neutron diffraction6,7. The extreme value of the lattice energy was found in every case when the plane O(w) · · · O(w) · · · H(w) was almost parallel to the crystallographic plane (010) (Table I). These positions are about halfway between the positions named H(2) and H(3) by SCHRODER1. This corresponds to a bifurcated arrangement in which each hydrogen atom is approximately equidistant from two Cl atoms at about 2.7 Å and the angles O(w) · · · H(w) · · · Cl are very bent (129 to 138°). The atoms Mo, O(w) and both hydrogen atoms of the water molecule are in a planar arrangement.

Table I. Coordinates of hydrogen positions of least electrostatic energy in two polytypes of MoO$_4$Cl$_2$ · H$_2$O.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pmn2_1</td>
<td>MoO$_4$Cl$_2$ · H$_2$O</td>
<td>H(w)</td>
<td>0.5847</td>
<td>0.7565</td>
</tr>
<tr>
<td>Pmn2_1</td>
<td>MoO$_4$Cl$_2$ · H$_2$O</td>
<td>H(w)</td>
<td>0.0847</td>
<td>0.5669</td>
</tr>
<tr>
<td>Pmn2_1</td>
<td>MoO$_4$Cl$_2$ · H$_2$O</td>
<td>H(w)</td>
<td>0.0847</td>
<td>0.3129</td>
</tr>
</tbody>
</table>

Similar geometries have been found previously. In MnCl$_2$ · 4 H$_2$O7,8 atom H(12) forms a bifurcated bond of similar dimensions. Also in MnCl$_2$ · 4 H$_2$O two of the water molecules [O(3) and O(4)] have planar arrangements of Mn, O(w) and the hydrogen atoms. This example is also instructive because the hydrogen atom positions were predicted on the basis of electrostatic calculations in 19652 and confirmed by neutron diffraction by El Saffar and Brown in 19718. It is expected that the hydrogen atom positions predicted here for the two polytypes of MoO$_4$Cl$_2$ · H$_2$O are within 0.1 Å of their true positions as they can be determined by neutron diffraction.

I thank the Computer Center of the University of Illinois for computer time.

Table II. Environments of hydrogen atoms in two polytypes of MoO$_4$Cl$_2$ · H$_2$O.

a) Pmn2_1	H(w) · · · Cl	2.692 Å	O(1) · · · H(w) · · · Cl	137.5°
a) Pmn2_1	H(w) · · · Cl$'$	2.738	O(1) · · · H(w) · · · Cl$'$	128.9
b) Pmn2_1	H(w) · · · MoI	2.964	MoO · · · O(1) · · · H(w)	125.5
b) Pmn2_1	H(w) · · · ClII	2.679 Å	H(w) · · · ClII	2.667 Å
b) Pmn2_1	H(w) · · · ClIII	2.725	H(w) · · · ClIII	2.705
b) Pmn2_1	H(w) · · · MoII	2.981	H(w) · · · MoII	2.893
b) Pmn2_1	O(1) · · · H(w) · · · ClII	137.8°	O(1) · · · H(w) · · · ClII	130.0
b) Pmn2_1	O(1) · · · H(w) · · · ClIII	130.0	O(1) · · · H(w) · · · ClIII	130.1
b) Pmn2_1	MoI · · · O(1) · · · H(w)	125.4	MoI · · · O(1) · · · H(w)	125.4
Effect of Ortho Substitution on the Aminolysis of Active Esters in Aprotic Solvents

T. KóMIVES, A. F. MÁRTON, F. DUTKA
Central Research Institute for Chemistry of the Hungarian Academy of Sciences, H-1525 Budapest, Hungary
M. LÓW, and L. KISFALUDY
Chemical Works of Gedeon Richter Ltd., H-1103 Budapest, Hungary

(Z. Naturforsch. 31b, 1359–1360 [1977]; received August 8, 1977)

Kinetics, Aminolysis, Active Ester, Aprotic Solvent, Ortho Effect

Kinetics of the piperidinolysis of active esters of acetic acid in acetonitrile and chlorobenzene was investigated. The rate data show intramolecular catalysis for the aminolysis of 2-nitro- and 2-cyanophenyl esters, while reactions of 2,6-disubstituted compounds are hindered by steric inhibition.

The active ester procedure of amide bond formation plays an important role in peptide syntheses. From the time of the introduction of this technique a number of leaving phenoxy groups have been examined many of them containing ortho substituent(s). Though the activation observed when introducing electron-withdrawing substituents into the meta and para position of the leaving group was supported by kinetic studies, the effect of ortho substitution on the kinetics of amide bond formation has not been investigated so far.

This paper presents kinetic data on the aminolysis of several active esters in two aprotic solvents. For this study active esters of acetic acid were used because a) aminolysis of carboxylic acid esters (including aminoacyl derivatives) proceeds through a common mechanism, and b) intramolecular interactions between the leaving group and the acyl portion (as it may occur when using esters of aminoacids) are absent.

Under the pseudo first order conditions of excess amine all the reactions followed the general rate equation for ester aminolyses in aprotic solvents:

\[
\frac{d[\text{ester}]}{dt} = (k_2[\text{amine}] + k_3[\text{amine}]^2)[\text{ester}].
\]

Our second and third order rate constants together with literature pK_a values for the leaving phenoxy groups are summarized in the Table.

In accord with the early observation that aminolytic reactivity of active esters strongly depends on the basicity of their leaving group, with the exception of 2,6-disubstituted compounds which exhibit negative deviations, logarithms of \(k_2^{\text{AN}}\) and \(k_3^{\text{CB}}\) values in the Table can be correlated linearly with the pK_a's of the leaving groups (not shown). Since the extent of the lag behind the expected rates for the aminolyses of 2,6-disubstituted reactants is related to the steric requirements for the \(o,o'\)-substituents (H < F < Cl < CH_3 < Br), steric inhibition is that hinders the aminolysis in these cases.

The facts that \(k_2^{\text{AN}}\) and \(k_3^{\text{CB}}\) for the reaction of 2-nitro- and 2-cyanophenyl acetate fit the above correlation, while \(k_3^{\text{CB}}\) constants are considerably higher than expected (leading to slight solvent dependences for \(k_3\) and low \(k_3^{\text{CB}}/k_3^{\text{AN}}\) ratios), clearly indicate anchimeric assistance by the \(o\)-nitro- and \(o\)-cyano functions. These results provide the first example of intramolecular participation by an \(o\)-cyano group in ester aminolyses, and suggest that aminolytic reactivities of 2-nitrophenyl esters of aminoacids exceeding those of the 4-nitro analogues are, at least in part, due to the intramolecular catalysis by the \(o\)-nitro group.

References:

1. F. A. SCHROEDER, Z. Naturforsch. 32b, 361 [1977]; in this paper the positional parameters of H_2II should read 0.1, 0.65, 0.6 and not 0.1, 0.65, 0.82 (private communication from F. A. SCHROEDER).
6. The O(w)-H(w) distances assumed by SCHROEDER range from 1.3 to 1.9 \(\text{Å}\), the angles (Hw·O(w)-H(w)) vary from 57 to 93°. None of these values are realistic.