Jump to ContentJump to Main Navigation

Acta Biologica Cracoviensia s. Botanica

The Journal of Polish Academy of Sciences

2 Issues per year


lMPACT FACTOR increased in 2014: 0.730
5-year IMPACT FACTOR: 1.044

SCImago Journal Rank (SJR) 2014: 0.270
Source Normalized Impact per Paper (SNIP) 2014: 0.766
Impact per Publication (IPP) 2014: 0.866

Index Copernicus (2013): ICV=14.30

Ministry of Science and Higher Education: 20 points

Open Access
VolumeIssuePage

Influence of a Heavy-Metal-Polluted Environment on Viola tricolor Genome Size and Chromosome Number

Aneta Słomka1 / Dorota Siwińska1 / Elżbieta Wolny1 / Kristin Kellner1 / Elżbieta Kuta1

Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka St., 31-044 Cracow, Poland1

Department of Plant Anatomy and Cytology, University of Silesia, 26/28 Jagiellońska St., 40-032 Katowice, Poland2

This content is open access.

Citation Information: Acta Biologica Cracoviensia Series Botanica. Volume 53, Issue 1, Pages 7–15, ISSN (Online) 1898-0295, ISSN (Print) 0001-5296, DOI: 10.2478/v10182-011-0001-8, August 2011

Publication History

Published Online:
2011-08-05

Influence of a Heavy-Metal-Polluted Environment on Viola tricolor Genome Size and Chromosome Number

Intraspecific changes in genome size and chromosome number lead to divergence and species evolution. Heavy metals disturb the cell cycle and cause mutations. Areas contaminated by heavy metals (metalliferous sites) are places where microevolutionary processes accelerate: very often only a few generations are enough for a new genotype to arise. This study, which continues our long-term research on Viola tricolor (Violaceae), a species occurring on both metalliferous (Zn, Pb, Cd, Cu) and non-metalliferous soils in Western and Central Europe, is aimed at determining the influence of environments polluted with heavy metals on genome size and karyological variability. The genome size of V. tricolor ranged from 3.801 to 4.203 pg, but the differences between metallicolous and non-metallicolous populations were not statistically significant. Altered chromosome numbers were significantly more frequent in material from the polluted sites than from the non-polluted sites (43% versus 28%). Besides the standard chromosome number (2n = 26), aneuploid cells with lower (2n = 18-25) or higher (2n = 27, 28) chromosome numbers were found in plants from both types of site, but polyploid (2n = 42) cells were observed only in plants from the metalliferous locality. The lack of correlation between chromosome variability in root meristematic cells and genome size estimated from peduncle cells can be attributed to elimination of somatic mutations in generative meristem, producing chromosome-stable non-meristematic tissues in the peduncle.

Keywords: Viola tricolor; pseudometallophyte; C-DNA value; chromosome number; aneuploidy; polyploidy

  • Ajalin I, Kobza F, and Doležel J. 2002. Ploidy identification of doubled chromosome number plants in Viola x wittrocktana Gams. M1-generation. Horticultural Science (Prague) 29: 34-40.

  • Banásová V, Horak O, Éiamporová M, Nadubinska M, and Lichtscheidl I. 2006. The vegetation of metalliferous and non-metalliferous grassland in two former mine regions in central Slovakia. Biologia Bratislava 61(3): 1-7.

  • Bayliss MW. 1980. Chromosomal variation in plant tissues in culture. In: Vasal IK [ed.], Perspective in Plant Cell and Tissue Culture, 113-144. Academic Press.

  • Beaulieu JM, Smith S, and Leitch IJ. 2010. On the tempo of genome size evolution in Angiosperms. Journal of Botany, doi: 10.1155/2010/989152. [CrossRef]

  • Bolkhovskikh Z, Grif V, Matvejeva T, and Zakharyeva O. 1969. Chromosome Number of Flowering Plants. Academy of Science of the USSR. V.L, Komarov Botanical Institute.

  • Bone E, and Farres A. 2001. Trends and rates of microevolution in plants. Genetica 112-113: 165-182. [CrossRef] [PubMed]

  • Carroll SP, Hendry AP, Reznick DN, and Fox CW. 2007. Evolution on ecological time-scales. Functional Ecology 21: 387-393. [CrossRef]

  • Cavalier-Smith T. 2005. Economy, speed and size mater: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147-175. [CrossRef]

  • Coulaud J, Barghi N, Lefèbvre C, and Siljak-Yakovlev S. 1999. Cytogenetic variation in populations of Armeria maritima (Mill.) Willd. in relation to geographical distribution and soil stress tolerances. Canadian Journal of Botany 77: 673-685.

  • D'Amato F. 1991. Nuclear changes in cultured plant cells. Caryologia 44(3-4): 217-224.

  • Degenhardt RF, Spaner D, Harker KN, Raatz LL, and Hall LM. 2005. Plasticity, life cycle and interference potential of field violet (Viola arvensis Murr.) in direct-seeded wheat and canola in central Alberta. Canadian Journal of Plant Science 85: 271-284. [CrossRef]

  • Dobrzańska J. 1955. Flora and ecological studies on calamine flora in the district of Boleslaw and Olkusz. Acta Societatis Botanicorum Poloniae 24(2): 257-407.

  • Doležel J, Sgorbati S, and Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625-631. [CrossRef]

  • Doležel J, and Göhde W. 1995. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow-cytometry. Cytometry 19: 103-106. [PubMed] [CrossRef]

  • Doležel J, and Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95(1): 99-110. [CrossRef] [PubMed]

  • Doležel J, Greilhuber J, and Suda J. 2007. Flow Cytometry with Plant Cells. Analysis of Genes, Chromosomes and Genomes. Wiley-VCH, Weinheim.

  • Erben M. 1996. The significance of hybridization on the forming of species in the genus Viola. Bocconea 5: 113-118.

  • Ernst WHO, Knolle F, Kratz S, and Schung E. 2004. Aspects of ecotoxicology of heavy metals in the Harz region - a guided excursion. Landbauforschung Võlkenrode 54: 53-71.

  • Garrido MA, Jamilena M, Lozano R, Riuz Rejon C, Riuz Rejon M, and Parker JS. 1994. rDNA site number polymorphism and NOR inactivation in natural populations of Allium schoenoprasum. Genetica 94: 67-71. [CrossRef]

  • Gasmanová N, Lebeda A, Doležalová I, et al. 2007. Genome size variation of Lotus peregrinus at Evolution Canyon I microsite, lower Nahal Oren, Mt. Carmel, Israel. Acta Biologica Cracoviensia series Botanica 49(1): 39-46.

  • Góralski G, Lubczyńska P, and Joachimiak AJ. 2009. Chromosome number database. http://www.binoz.uj.edu.pl:8080/chromosomes/

  • Greger M. 2004. Metal availability, uptake, transport and accumulation in plants, In: Prasad, MNV [ed.], Heavy Metal Stress in Plants. From Biomolecules to Ecosystems, 1-27. Springer, Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo.

  • Gregory TR. 2002. Genome size and developmental complexity. Genetica 115: 131-146. [CrossRef] [PubMed]

  • Gregory TR. 2005. The C-value enigma in plants and animals: A review of parallels and an appeal for partnership. Annals of Botany 95(1): 133-146. [CrossRef] [PubMed]

  • Greilhuber J. 1998. Intraspecific variation in genome size: A critical reassessment. Annals of Botany 82 (Suppl. A): 27-35. [CrossRef]

  • Greilhuber J. 2005. Intraspecific variation in genome size in Angiosperms: identifying its existence. Annals of Botany 95: 91-98. [PubMed] [CrossRef]

  • Greilhuber J. 2008. Cytochemistry and C-values: the less-well known world of nuclear DNA amounts. Annals of Botany 101(6): 791-804. [CrossRef] [PubMed]

  • Grześ IM. 2007. Does rare Gentianella germanica (Wild.) Börner originating from calamine spoils differ in selected morphological traits from reference populations? Plant Species Biology 22: 49-52. [CrossRef]

  • Hendry AP, and Kinnison MT. 2001. An introduction to microevolution: rate, pattern, process. Genetica 112-113: 1-8. [CrossRef] [PubMed]

  • Hildebrandt U, Hoef-Emden K, Backhausen S, Bothe H, Bożek M, Siuta A, and Kuta E. 2006. The rare, endemic zinc violets of Central Europe originate from Viola lutea Huds. Plant Systematics and Evolution 257(3-4): 205-222. [CrossRef]

  • Hildebrandt U, Regvar M, and Bothe H. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1): 139-146. [PubMed] [CrossRef]

  • Jones K. 1978. Aspects of chromosome evolution in higher plants. In: Woolhouse HW [ed.], Advances in Botanical Research, 120-193. Academic Press, London, New York, San Francisco.

  • Jones RN, and Rees H. 1982. B Chromosomes. Academic Press, London, New York, Paris, San Francisco, São Paulo, Sydney, Tokyo, Toronto.

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, and Schulman AH. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy od Sciences 97(12): 6603-6607.

  • Klekowski EJ. 1998. Mutation rates in mangroves and other plants. Genetica 102-103: 325-331. [CrossRef]

  • Klekowski EJ Jr, and Godfrey PJ. 1989. Ageing and mutation in plants. Nature 340: 389-391.

  • Klekowski EJ, Kazarinova-Fukshansky N, and Fukshansky L. 1985. Shoot apical meristems and mutation-stratified meristems and angiosperm evolution. American Journal of Botany 72: 1788-1800. [CrossRef]

  • Knight CA, Molinari NA, and Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95(1): 177-190. [PubMed] [CrossRef]

  • Krahulcová A, Krahulec F, and Kirschner J. 1996. Introgressive hybridization between a native and an introduced species: Viola lutea subsp. sudetica versus V. tricolor. Folia Geobotanica et Phytotaxonomica 31: 219-244. [CrossRef]

  • Lausi D, and Cusma Verali T. 1986. Caryological and morphological investigations on a new zinc violet (Cave del Predil, Western Julian Alps, NE-Italy). Studia Geobotanica 6: 123-129.

  • Lee M, and Philips RL. 1988. The chromosomal basis of somaclonal variation. Annual Review of Plant Physiology and Plant Molecular Biology 39: 413-437. [CrossRef]

  • Małuszyńska J, and Siwińska D. 2004. Wielkość genomu roślinnego. Postępy Biologii Komórki 31, suppl. 22: 101-114.

  • Medina MH, Correa JA, and Barata C. 2007. Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67: 2105-2114. [PubMed] [CrossRef]

  • Mellerowicz EJ, Baucher M, Sundberg B, and Boerjan W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology 47(1-2): 239-274. [CrossRef] [PubMed]

  • Murray BG. 2005. When does intraspecific C-value variation become taxonomically significant? Annals of Botany 95(1): 119-125. [CrossRef] [PubMed]

  • Nkongolo KK, Deck A, and Michael P. 2001. Molecular and cytological analyses of Deschampsia cespitosa populations from Northern Ontario (Canada). Genome 44: 818-825. [PubMed]

  • Ohri D. 1998. Genome size variation and plant systematics. Annals of Botany 82: 75-83. [CrossRef]

  • Pavíček T, Bureš P, Horová L, Raskina O, and Nevo E. 2008. Genome size microscale divergence of Cyclamen persicum in Evolution Canyon, Israel. Central European Journal of Biology 3(1): 83-90. [CrossRef]

  • Petit RJ, and Hampe A. 2006. Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution, and Systematics 37: 187-214.

  • Price HJ, Chambers KL, and Bachmann K. 1981. Genome size variation in diploid Microseris bigelovii (Asteraceae). Botanical Gazette 142: 156-159.

  • Price HJ. 1988. Nuclear DNA content variation within Angiosperm species. Evolutionary Trends in Plants 2(1): 51-60.

  • Raskina O, Belyayev A, and Nevo E. 2004. Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. PNAS 101(41): 14818-14823. [CrossRef]

  • Raskina O, Barber JC, Nevo E, and Belyayev A. 2008. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenetic and Genome Research 120: 351-357. [PubMed] [CrossRef]

  • Rayburn L, and Wetzel JB. 2002. Flow cytometric analyses of intraplant nuclear DNA content variation induces by sticky chromosomes. Cytometry 49: 36-41. [CrossRef]

  • Sedel'nikova TS, and Pimenov AV. 2007. Chromosomal mutations in Siberian Larch [Larix sibirica Ladeb.) on Taimyr Peninsula. Biology Bulletin 34(2): 198-201.

  • Seehausen O, Takimoto G, Roy D, and Jokela J. 2008. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Molecular Ecology 17: 30-44 [CrossRef] [PubMed]

  • Słomka A, Libik-Konieczny M, Kuta E, and Miszalski Z. 2008. Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. Journal of Plant Physiology 165: 1610-1619.

  • Słomka A, Kawalec P, Kellner K, Jędrzejczyk-Korycińska M, Rostański A, and Kuta E. 2010. Was reduced pollen viability in Viola tricolor L. the result of heavy metal pollution or rather the test applied? Acta Biologica Cracoviensia Series Botanica 52(1): 123-127.

  • Słomka A, Kuta E, Szarek-Łukaszewska G, Godzik et al. 2011a. Violets of the section Melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps. Journal of Plant Physiology 168: 1191-1199. [PubMed] [CrossRef]

  • Słomka A, Sutkowska A, Szczepaniak M, Malec P, Mitka J, and Kuta E. 2011b. Increased genetic diversity of Viola tricolor L. (Violaceae) in metal-polluted environments. Chemosphere 83: 435-442. [PubMed] [CrossRef]

  • Słomka A, Jędrzejczyk-Korycińska M, Rostański A, Karcz J, Kawalec P, and Kuta E. 2011c. Heavy metals in soil affect reproductive processes more than morphological characters in Viola tricolor. Environmental and Experimental Botany, doi: 10.1016/j.envexpbot.2011.07.003 [CrossRef]

  • Stace CA. 1991. Plant Taxonomy and Biosystematics. Cambridge: Cambridge University Press.

  • Steinkellner H, Mun-Sik K, Helma C, Eckers S et al. 1998. Genotoxic effects of heavy metals: Comparative investigation with plant bioassays. Environmental and Molecular Mutagenesis 31(2): 183-191. [CrossRef]

  • Stockwell CA, Hendry AP, and Kinnison MT. 2003. Contemporary evolution meets conservation biology. Trends in Ecology and Evolution 18(2): 94-101.

  • Šmarda P, Bureš P. 2010. Understanding intraspecific variation in genome size in plants. Preslia 82: 41-61.

  • Temsch EM, Temsch W, Ehrendorfer-Schratt L, and Greilhuber J. 2010. Heavy metal pollution, selection, and genome size: the species of the Žerjav study revised with flow cytometry. Journal of Botany, doi: 10.1155/2010/596542. [CrossRef]

  • Turpeinen T, Kulmala J, and Nevo E. 1999. Genome size variation in Hordeum spontaneum populations. Genome 42: 1094-1099.

  • Verlaque R, and Espeut M. 2007. IAPT/IOPB chromosome data 3. Taxon 56(1): 209.

  • Vidic T, Greilhuber J, Vilhar B, and Dermastia M. 2009. Selective significance of genome size in a plant community with heavy metal pollution. Ecological Applications 19: 1515-1521. [CrossRef]

  • Wierzbicka M, and Rostański A. 2002. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: a review. Acta Biologica Cracoviensia Series Botanica 44: 7-19.

  • Yockteng R, Ballard HE Jr, Mansion G, Dajoz I, and Nadot S. 2003. Relationship among pansies (Viola section Melanium) investigated using ITS an ISSR markers. Plant Systematics and Evolution 241: 153-170.

Comments (0)

Please log in or register to comment.