Jump to ContentJump to Main Navigation

Acta Geophysica

6 Issues per year

IMPACT FACTOR 2014: 1.068

SCImago Journal Rank (SJR) 2014: 0.563
Source Normalized Impact per Paper (SNIP) 2014: 0.925
Impact per Publication (IPP) 2014: 1.029

Open Access


Experimental evidence of a non-extensive statistical physics behavior of electromagnetic signals emitted from rocks under stress up to fracture. Preliminary results

1Laboratory of Geophysics and Seismology, Technological Educational Institution of Crete, Chania, Crete, Greece

2Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

© 2012 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Acta Geophysica. Volume 60, Issue 3, Pages 894–909, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: 10.2478/s11600-012-0030-z, April 2012

Publication History

Published Online:


The application of mechanical stress on a rock sample can induce electromagnetic emissions. Such emissions can be detected experimentally and in principle could be used as precursors of the upcoming failure.

Using experimental observations of stress-induced electromagnetic emissions (SIEME), we apply the concepts of non-extensive statistical physics (NESP) to the time intervals between consecutive SIEME. The application of NESP is appropriate to systems such as fracture-induced effects, where non-linearity, long-range interactions and scaling are important. We find that the SIEME energy release distribution and the inter-event time distribution reflect a sub-extensive system with thermodynamic q-values of the order of q E = 1.67 and q τ ≈ 1.7, respectively.

Keywords: electromagnetic emissions; non-extensive statistical physics; rocks

  • [1] Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108,B2, 2113, DOI: 10.1029/2002JB002220. http://dx.doi.org/10.1029/2002JB002220 [CrossRef]

  • [2] Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350,2–4, 588–596, DOI: 10.1016/j.physa.2004.10.040. http://dx.doi.org/10.1016/j.physa.2004.10.040 [CrossRef]

  • [3] Anastasiadis, C., D. Triantis, I. Stavrakas, F. Vallianatos (2004), Pressure Stimulated Currents (PSC) in marble samples, Ann. Geophys. 47,1, 21–28.

  • [4] Benson, P.M., B.D. Thompson, P.G. Meredith, S. Vinciguerra, and R.P. Young (2007), Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography, Geophys. Res. Lett. 34,3, L03303, DOI: 10.1029/2006GL028721. http://dx.doi.org/10.1029/2006GL028721 [CrossRef]

  • [5] Benson, P.M., S. Vinciguerra, P.G. Meredith, and R.P. Young (2008), Laboratory simulation of volcano seismicity, Science 322,5899, 249–252, DOI: 10.1126/science.1161927. http://dx.doi.org/10.1126/science.1161927 [CrossRef]

  • [6] Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57,3, 341–371.

  • [7] Carlson, J.M., J.S. Langer, B.E. Shaw, and C. Tang (1991), Intrinsic properties of a Burridge-Knopoff model of an earthquake fault, Phys. Rev. A 44,2, 884–897, DOI: 10.1103/PhysRevA.44.884. http://dx.doi.org/10.1103/PhysRevA.44.884 [CrossRef]

  • [8] Chakrabarti, B.K., and L.G. Benguigui (1997), Statistical Physics of Fracture and Breakdown in Disordered Systems, Oxford University Press, Oxford, 161 pp.

  • [9] Enomoto, Y., and H. Hashimoto (1990), Emission of charged particles from indentation fracture of rocks, Nature 346, 641–643, DOI: 10.1038/346641a0. http://dx.doi.org/10.1038/346641a0 [CrossRef]

  • [10] Frid, V., A. Rabinovitch, and D. Bahat (2003), Fracture induced electromagnetic radiation, J. Phys. D: Appl. Phys. 36,13, 1620–1628, DOI: 10.1088/0022-3727/36/13/330. http://dx.doi.org/10.1088/0022-3727/36/13/330 [CrossRef]

  • [11] Frid, V., A. Rabinovitch, and D. Bahat (2006), Crack velocity measurement by induced electromagnetic radiation, Phys. Lett. A 356,2, 160–163, DOI: 10.1016/j.physleta.2006.03.024. http://dx.doi.org/10.1016/j.physleta.2006.03.024 [CrossRef]

  • [12] Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2009), Electric polarization induced by mechanical loading of Solnhofen limestone, Phil. Mag. Lett. 89,7, 453–463, DOI: 10.1080/09500830903022636. http://dx.doi.org/10.1080/09500830903022636 [CrossRef]

  • [13] Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2011), Time-dependent Benioff strain release diagrams, Phil. Mag. 91,12, 1693–1704, DOI: 10.1080/14786435.2010.544684. http://dx.doi.org/10.1080/14786435.2010.544684 [CrossRef]

  • [14] Hasumi, T. (2007), Interoccurrence time statistics in the two-dimensional Burridge-Knopoff earthquake model, Phys. Rev. E 76,2, 026117, DOI: 10.1103/PhysRevE.76.026117. http://dx.doi.org/10.1103/PhysRevE.76.026117 [CrossRef]

  • [15] Hayakawa, M. (ed.) (1999), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo.

  • [16] Hayakawa, M., and Y. Fujinawa (eds.) (1994), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo.

  • [17] Hayakawa, M., and O.A. Molchanov (eds.) (2002), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 478 pp.

  • [18] Herrmann, H.J., and S. Roux (1990), Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam.

  • [19] Nardi, A. (2001), Emissioni elettromagnetiche in rocce sottoposte a sollecitazione meccanica. Un possibile precursore sismico?, Master thesis, University of Rome “La Sapienza” (in Italian).

  • [20] Nardi, A., (2005), Emissioni elettromagnetiche naturali come precursori di fenomeni sismici, Ph.D. thesis, University of Rome “La Sapienza” (in Italian).

  • [21] Nardi, A., and M. Caputo (2006), A perspective electric earthquake precursor observed in the Apennines, Boll. Geofis. Teor. Appl. 47,1–2, 3–12.

  • [22] Nardi, A., and M. Caputo (2009), Monitoring the mechanical stress of rocks through the electromagnetic emission produced by fracturing, Int. J. Rock Mech. Min. Sci. 46,5, 940–945, DOI: 10.1016/j.ijrmms.2009.01.005. http://dx.doi.org/10.1016/j.ijrmms.2009.01.005 [CrossRef]

  • [23] Nardi, A., M. Caputo, and C. Chiarabba (2007), Possible electromagnetic earthquake precursors in two years of ELF-VLF monitoring in the atmosphere, Boll. Geofis. Teor. Appl. 48,2, 205–212.

  • [24] O’Keefe, S.G., and D.V. Thiel (1995), A mechanism for the production of electromagnetic radiation during fracture of brittle materials, Phys. Earth Planet. In. 89,1–2, 127–135, DOI: 10.1016/0031-9201(94)02994-M. http://dx.doi.org/10.1016/0031-9201(94)02994-M [CrossRef]

  • [25] Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), Geocomplexity and the Physics of Earthquakes, American Geophysical Union, Washington, 284 pp.

  • [26] Slifkin, L. (1993), Seismic electric signals from displacement of charged dislocations, Tectonophysics 224,1–3, 149–152, DOI: 10.1016/0040-1951(93)90066-S. http://dx.doi.org/10.1016/0040-1951(93)90066-S [CrossRef]

  • [27] Stavrakas, I., C. Anastasiadis, D. Triantis, and F. Vallianatos (2003), Piezo stimulated currents in marble samples: Precursory and concurrent-with-failure signals, Nat. Hazards Earth Syst. Sci. 3,3/4, 243–247, DOI: 10.5194/nhess-3-243-20. http://dx.doi.org/10.5194/nhess-3-243-2003 [CrossRef]

  • [28] Stavrakas, I., D. Triantis, Z. Agioutantis, S. Maurigiannakis, V. Saltas, F. Vallianatos, and M. Clarke (2004), Pressure stimulated currents in rocks and their correlation with mechanical properties, Nat. Hazards Earth Syst. Sci. 4, 563–567, DOI: 10.5194/nhess-4-563-2004. http://dx.doi.org/10.5194/nhess-4-563-2004 [CrossRef]

  • [29] Takeuchi, A., and H. Nagahama (2001), Voltage changes induced by stick-slip of granites, Geophys. Res. Lett. 28,17, 3365–3368, DOI: 10.1029/2001GL012981. http://dx.doi.org/10.1029/2001GL012981 [CrossRef]

  • [30] Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389,9, 1911–1914, DOI: 10.1016/j.physa.2010.01.012. http://dx.doi.org/10.1016/j.physa.2010.01.012 [CrossRef]

  • [31] Telesca, L. (2010b), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (M L = 5.8), Terra Nova 22,2, 87–93, DOI: 10.1111/j.1365-3121.2009.00920.x. http://dx.doi.org/10.1111/j.1365-3121.2009.00920.x [CrossRef]

  • [32] Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52,1–2, 479–487, DOI: 10.1007/BF01016429. http://dx.doi.org/10.1007/BF01016429 [CrossRef]

  • [33] Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys. 29,1, 1–35, DOI: 10.1590/S0103-97331999000100002. http://dx.doi.org/10.1590/S0103-97331999000100002 [CrossRef]

  • [34] Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8. [CrossRef]

  • [35] Tsallis, C. (2001), Nonextensive statistical mechanics and thermodynamics: Historical background and present status. In: S. Abe and Y. Okamoto (eds.), Nonextensive Statistical Mechanics and Its Applications, Springer, Berlin, 3–98. http://dx.doi.org/10.1007/3-540-40919-X_1

  • [36] Tzanis, A., and F. Vallianatos (2001), A critical review of ULF electric earthquake precursors, Ann. Geofis. 44,2, 429–460.

  • [37] Tzanis, A., and F. Vallianatos (2002), A physical model of Electric Earthquake Precursors due to crack propagation and the motion of charged edge dislocations. In: M. Hayakawa and O.A. Molchanov (eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 117–130.

  • [38] Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9,1, 211–216, DOI: 10.5194/nhess-9-211-2009. http://dx.doi.org/10.5194/nhess-9-211-2009 [CrossRef]

  • [39] Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390,10, 1773–1778, DOI: 10.1016/j.physa.2010.12.040. http://dx.doi.org/10.1016/j.physa.2010.12.040 [CrossRef]

  • [40] Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389,21, 4989–4993, DOI: 10.1016/j.physa.2010.06.056. http://dx.doi.org/10.1016/j.physa.2010.06.056 [CrossRef]

  • [41] Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509,1–2, 50–54, DOI: 10.1016/j.tecto.2011.06.001. http://dx.doi.org/10.1016/j.tecto.2011.06.001 [CrossRef]

  • [42] Vallianatos, F., and D. Triantis (2008), Scaling in Pressure Stimulated Currents related with rock fracture, Physica A 387,19–20, 4940–4946, DOI: 10.1016/j.physa.2008.03.028. http://dx.doi.org/10.1016/j.physa.2008.03.028 [CrossRef]

  • [43] Vallianatos, F., and A. Tzanis (1998), Electric current generation associated with the deformation rate of a solid: Preseismic and coseismic signals, Phys. Chem. Earth 23,9–10, 933–939, DOI: 10.1016/S0079-1946(98)00122-0. http://dx.doi.org/10.1016/S0079-1946(98)00122-0 [CrossRef]

  • [44] Vallianatos, F., and A. Tzanis (1999a), A model for the generation of precursory electric and magnetic fields associated with the deformation rate of the earthquake focus. In: M. Hayakawa (ed.), Atmospheric and Ionospheric electromagnetic phenomena associated with Earthquakes, TERRAPUB, Tokyo, 287–305.

  • [45] Vallianatos, F., and A. Tzanis (1999b), On possible scaling laws between electric earthquake precursors (EEP) and earthquake magnitude, Geophys. Res. Lett., 26,13, 2013–2016, DOI: 10.1029/1999GL900406. http://dx.doi.org/10.1029/1999GL900406 [CrossRef]

  • [46] Vallianatos, F., and A. Tzanis (2003), On the nature, scaling and spectral properties of pre-seismic ULF signals, Nat. Hazards Earth Syst. Sci. 3,3/4, 237–242, DOI: 10.5194/nhess-3-237-2003. http://dx.doi.org/10.5194/nhess-3-237-2003 [CrossRef]

  • [47] Vallianatos, F., D. Triantis, A. Tzanis, C. Anastasiadis, and I. Stavrakas (2004), Electric earthquake precursors: from laboratory results to field observations, Phys. Chem. Earth 29,4–9, 339–351, DOI: 10.1016/j.pce.2003.12.003. [CrossRef]

  • [48] Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59,4, 770–784, DOI: 10.2478/s11600-011-0015-3. http://dx.doi.org/10.2478/s11600-011-0015-3 [CrossRef]

  • [49] Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, EPL 94,6, 68008, DOI: 10.1209/0295-5075/94/68008. http://dx.doi.org/10.1209/0295-5075/94/68008 [CrossRef]

  • [50] Varotsos, P. (2005), The Physics of Seismic Electric Signals, TERRAPUB, Tokyo.

  • [51] Yamashita, T. (1976), On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress. Part I. Rupture propagation, J. Phys. Earth 24,4, 417–444, DOI: 10.4294/jpe1952.24.417. http://dx.doi.org/10.4294/jpe1952.24.417 [CrossRef]

  • [52] Yoshida, S., M. Uyeshima, and M. Nakatani (1997), Electric potential changes associated with slip failure of granite: Preseismic and coseismic signals, J. Geophys. Res. 102,B7, 14883–14897, DOI: 10.1029/97JB00729. http://dx.doi.org/10.1029/97JB00729 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. De Santis, G. De Franceschi, L. Spogli, L. Perrone, L. Alfonsi, E. Qamili, G. Cianchini, R. Di Giovambattista, S. Salvi, E. Filippi, F.J. Pavón-Carrasco, S. Monna, A. Piscini, R. Battiston, V. Vitale, P.G. Picozza, L. Conti, M. Parrot, J.-L. Pinçon, G. Balasis, M. Tavani, A. Argan, G. Piano, M.L. Rainone, W. Liu, and D. Tao
Physics and Chemistry of the Earth, Parts A/B/C, 2015
Alexis Cartwright-Taylor, Filippos Vallianatos, and Peter Sammonds
Physica A: Statistical Mechanics and its Applications, 2014, Volume 414, Page 368
Filippos Vallianatos and Dimos Triantis
EPL (Europhysics Letters), 2013, Volume 104, Number 6, Page 68002
Qiang Li and Gui-Ming Xu
International Journal of Geophysics, 2013, Volume 2013, Page 1
C. Stergiopoulos, I. Stavrakas, G. Hloupis, D. Triantis, and F. Vallianatos
Engineering Failure Analysis, 2013, Volume 35, Page 454
Filippos Vallianatos and Dimos Triantis
EPL (Europhysics Letters), 2012, Volume 99, Number 1, Page 18006

Comments (0)

Please log in or register to comment.