Jump to ContentJump to Main Navigation

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2014: 0.912
5-year IMPACT FACTOR: 1.485

SCImago Journal Rank (SJR) 2014: 0.353
Source Normalized Impact per Paper (SNIP) 2014: 0.743
Impact per Publication (IPP) 2014: 1.275

Open Access
VolumeIssuePage

Issues

Genetic polymorphisms in diabetes: Influence on therapy with oral antidiabetics

Una Glamočlija1 / Adlija Jevrić-Čaušević1

Hercegovinalijek d.o.o., 88000 Mostar, Bosnia and Herzegovina1

Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina2

This content is open access.

Citation Information: Acta Pharmaceutica. Volume 60, Issue 4, Pages 387–406, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: 10.2478/v10007-010-0040-9, December 2010

Publication History

Published Online:
2010-12-17

Genetic polymorphisms in diabetes: Influence on therapy with oral antidiabetics

Due to new genetic insights, etiologic classification of diabetes is under constant scrutiny. Hundreds, or even thousands, of genes are linked with type 2 diabetes. Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to be predisposed to type 2 diabetes mellitus across many large studies. Individually, each of these polymorphisms is only moderately predisposed to type 2 diabetes. On the other hand, monogenic forms of diabetes such as MODY and neonatal diabetes are characterized by unique clinical features and the possibility of applying a tailored treatment.

Genetic polymorphisms in drug-metabolizing enzymes, transporters, receptors, and other drug targets have been linked to interindividual differences in the efficacy and toxicity of a number of medications. Mutations in genes important in drug absorption, distribution, metabolism and excretion (ADME) play a critical role in pharmacogenetics of diabetes.

There are currently five major classes of oral pharmacological agents available to treat type 2 diabetes: sulfonylureas, meglitinides, metformin (a biguanide), thiazolidinediones, and α-glucosidase inhibitors. Other classes are also mentioned in literature.

In this work, different types of genetic mutations (mutations of the gene for glucokinase, HNF 1α, HNF1β and Kir6.2 and SUR1 subunit of KATP channel, PPAR-γ, OCT1 and OCT2, cytochromes, direct drug-receptor (KCNJ11), as well as the factors that influence the development of the disease (TCF7L2) and variants of genes that lead to hepatosteatosis caused by thiazolidinediones) and their influence on the response to therapy with oral antidiabetics will be reviewed.

Genetički polimorfizmi u dijabetesu: Utjecaj na terapiju oralnim antidijabeticima

Dijabetes tipa 2 dosegao je proporcije epidemije u SAD (> 18 milijuna) i cijelom svijetu (170 milijuna oboljelih osoba) te ima tendenciju daljnjeg dramatičnog rasta. Stoga se u posljednje vrijeme ulažu napori da se otkriju i razviju novi farmakološki agensi za liječenje ove bolesti. Klasifikacija šećerne bolesti proširena je uspjesima istraživača na području genetike. Da bismo razumjeli farmakogenetiku antidijabetika neophodno je razumjeti genetiku samog dijabetesa. Kao što će biti prikazano u ovom radu veliki broj gena koji su povezani s razvojem dijabetesa takođe utječe i na odgovor na terapiju antidijabeticima. S druge strane, mutacije gena koji utječu na ADME (apsorpcija, distribucija, metabolizam i ekskrecija) lijeka imaju značajan utjecaj na farmakogenetiku oralnih antidijabetika.

Utvrđeno je da je dijabetes genetički heterogena bolest. Uobičajeni oblici dijabetesa su gotovo uvijek poligenski i za razvoj same bolesti vrlo su značajne snažne interakcije među različitim genima kao i između gena i okoliša. Zbog toga mutacije ili polimorfizmi koji u manjoj mjeri utječu na funkciju gena mogu postati klinički značajni samo u slučaju kada se kombiniraju s drugim faktorima odnosno genima. Smatra se da u razvoju dijabetesa mogu sudjelovati stotine pa čak i tisuće gena. Do 2006. identificirano je nekoliko uobičajenih alela koji povećavaju rizik za razvoj dijabetesa, od kojih su najznačajniji PPARG (Pro12), KCNJ11 (Lys23) i TCF7L2 (T na rs7903146). Do danas je najveći uspjeh postignut u identifikaciji gena odgovornih za razmjerno rijetke oblike ove bolesti poput »Maturity-onset diabetes of the young« (MODY) i neonatalnog dijabetesa. Monogenske oblike dijabetesa odlikuju jedinstvene kliničke karakteristike i mogućnost primjene individualnog tretmana.

Genetički polimorfizmi enzima koji utječu na metabolizam lijekova, transportera, receptora i drugih ciljeva djelovanja lijekova povezani su s interindividualnim razlikama u efikasnosti i toksičnosti mnogih lijekova. Vrlo je važno da se na temelju farmakogenetičkih istraživanja mogu predvidjeti neki neželjeni efekti lijekova.

Trenutačno postoji pet glavnih klasa oralnih antidijabetika: sulfoniluree, meglitinidi, metformin (bigvanid), tiazolidindioni i inhibitori α-glukozidaze. U literaturi se također spominju inhibitori dipeptidil peptidaze IV (DPP-IV), selektivni antagonisti kanabinoidnog receptora 1 (CB-1), mimetici glukagonu sličnog peptida 1 i mimetici amilina.

Razumijevanje mehanizama koji rezultiraju disfunkcijom β stanica na fiziološkom i molekularnom nivou neophodno je za napredak u razumijevanju tretmana dijabetesa. U ovom radu dat je pregled različitih genetičkih mutacija (mutacije gena za glukokinazu, HNF 1α, HNF1β, Kir6.2 i SUR 1 podjedinicu KATP kanala β stanica, PPAR-γ, OCT1 i OCT2, citohrome, KCNJ11, faktore koji utječu na razvoj bolesti (TCF7L2) i varijante gena koji dovode do hepatosteatoze uzrokovane tiazolidindionima) te njihov utjecaj na odgovor na terapiju oralnim antidijabeticima.

Keywords: pharmacogenetics; oral antidiabetics

Keywords: farmakogenetika; oralni antidijabetici

  • M. Stumvoll, B. J. Goldstein and T. W. Haeften, Type 2 diabetes: principles of pathogenesis and therapy, Lancet 365 (2005) 1333-1346; DOI: 10.1016/S0140-6736(05)61032-X. [CrossRef]

  • M. Małecki and J. Skupień, Problems in differential diagnosis of diabetes types, Pol. Arch. Med. Wewn. 118 (2008) 435-440.

  • K. Almind, A. Doria and C. R. Kahn, Putting the genes for type 2 diabetes on the map, Nat Med. 7 (2001) 277-279; DOI: 10.1038/85405. [CrossRef]

  • M. N. Weedon, M. I. McCarthy, G. Hitman, M. Walker, C. J. Groves, E. Zeggini, N. W. Rayner, B. Shields, K. R. Owen, A. T. Hattersley and T. M. Frayling, Combining information from common type 2 diabetes risk polymorphisms improves disease prediction, PLoS Med. 3 (2006) e374; DOI: 10.1371/journal.pmed.0030374. [CrossRef]

  • R. Murphy, S. Ellard and A. T. Hattersley, Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes, Nat. Clin. Pract. Endocr. Metab. 4 (2008) 200-213; DOI: 10.1038/ncpendmet0778. [CrossRef]

  • O. Nyunt, J. Y. Wu, I. N. McGown, M. Harris, T. Huynh, G. M. Leong, D. M. Cowley and A. M. Cotterill, Investigating maturity onset diabetes of the young, Clin. Biochem. Rev. 30 (2009) 67-74. [PubMed]

  • C. Rongrong, H. Khalid and A. A. Maryam, Neonatal and late-onset diabetes mellitus caused by failure of pancreatic development: report of 4 more cases and a review of the literature. Pediatrics 121 (2008) 1541-1547; DOI: 10.1542/peds.2007-3543. [CrossRef]

  • L. Aguilar-Bryan and J. Bryan, Neonatal diabetes mellitus, Endocr. Rev. 29 (2008) 265-291; DOI: 10.1210/er.2007-0029. [CrossRef]

  • M. Polak and H. Cavé, Neonatal diabetes mellitus: a disease linked to multiple mechanisms, Orphanet J. Rare Dis. 2 (2007) 12; DOI: 10.1186/1750-1172-2-12. [PubMed] [CrossRef]

  • W. E. Evans and H. L. McLeod, Pharmacogenomics - drug disposition, drug targets and side effects, N. Engl. J. Med. 6 (2003) 538-549; DOI: 10.1056/NEJMra020526. [CrossRef]

  • R. Weinshilboum, Inheritance and drug response, N. Engl. J. Med. 348 (2003) 529-537; DOI: 10.1056/NEJMra020021. [CrossRef]

  • W. E. Evans and M. V. Relling, Pharmacogenomics: translating functional genomics into rational therapeutics, Science 286 (1999) 487-491; DOI: 10.1126/science.286.5439.487. [CrossRef]

  • Y. Nakamura, Pharmacogenomics and drug toxicity, N. Engl. J. Med. 8 (2008) 856-858; DOI: 10.1056/NEJMe0805136. [CrossRef]

  • R. A. Wilke, D. W. Lin, D. M. Roden, P. B. Watkins, D. Flockhart, I. Zineh, K. M. Giacomini and R. M. Krauss, Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges, Nat. Rev. Drug. Discov. 6 (2007) 904-916; DOI: 10.1038/nrd2423. [CrossRef]

  • N. Azarpira and M. H. Aghdaie, Frequency of C3435 MDR1 and A6896G CYP3A5 single nucleotide polymorphism in an Iranian population and comparison with other ethnic groups, Mod. J. Ist. Rep. Iran 20 (2006) 131-136.

  • J. L. Evans and R. J. Rushakoff, Oral Pharmacological Agents for Type 2 Diabetes: Oral Agents, Incretions and other »Non-Insulin« Pharmacologic Interventions for Diabetes, Endo Text. Org. - The Endocrine Source, Diabetes Manager (Eds. I. D. Goldfine and R. J. Rushakoff) last author version May 2010; http://diabetesmanager.pbworks.com/w/page/17680289/Oral-Pharmacological-Agents-for-Type-2-Diabetes

  • B. Vrhovac, I. Aganović, B. Anić, V. Barbarić Babić, I. Bakran, I. Barić, B. Baršić, J. Begovac, A. Beus, M. Bilušić, V. Bradamante, B. Srećko, B. Buljević, D. Čvorišćec, V. Degoricija, V. Dorn, Z. Duraković, V. Erdeljić, I. Francetić, V. Gašparović, I. Gjenero Margan, M. Herceg, M. Huić, V. Ivančan, D. Ivanović, T. Jukić, S. Kalenić, R. Katalinić, M. Katić, P. Kes, I. Klinar, M. Koršić, Ž. Krznarić, S. Lovasić, A. Lovrenčić Huzjan, M. Lovrenčić, D. Macan, V. Macolić Šarinić, K. Makar-Aušperger, I. Merćep, Ž. Metelko, S. Ostojić Kolonić, J. Pasini, I. Radman, Ž. Reiner, D. Rogić, M. Skerlev, E. Verona-Krznar, H. Vrčić, R. Vrhovac, I. Vukušić and S. Zupančić-Šalek, Farmakoterapijski priručnik, 4th ed., Medicinska naklada, Zagreb 2003, pp. 89-93.

  • N. Mulabegović, S. Lučić, S. Loga Zec, S. Čustović and F. Bečić, Registar lijekova s osnovama farmakoterapije 11, Federalno ministarstvo zdravstva: Udruženje farmakologa Federacije Bosne i Hercegovine, Sarajevo 2009, pp. 106-117.

  • R. K. Campbell, Type 2 diabetes: where we are today: An overview of disease burden, current treatments, and treatment strategies, J. Am. Pharm. Assoc. 49 (Suppl 1) (2009) S3-S9; DOI: 10.1331/JAPhA.2009.09077. [CrossRef]

  • M. L. Reitman and E. E. Schadt, Pharmacogenetics of metformin response: a step in the path toward personalized medicine, J. Clin. Invest. 117 (2007) 1226-1229; DOI: 10.1172/JCI32133. [CrossRef]

  • M. I. McCarthy and A. T. Hattersley, Learning from molecular genetics. Novel insights arising from the definition of genes for monogenic and type 2 diabetes, Diabetes 57 (2008) 2889-2898; DOI: 10.2337/db08-0343. [CrossRef]

  • A. T. Hattersley, Unlocking the secrets of the pancreatic β cell: man and mouse provide the key, J. Clin. Invest. 114 (2004) 314-316; DOI: 10.1172/JCI200422506. [CrossRef]

  • A. T. Hattersley and E. R. Pearson, Minireview: Pharmacogenetics and beyond: The interaction of therapeutic response, β-cell physiology, and genetics in diabetes, Endocrinology 147 (2006) 2657-2663; DOI: 10.1210/en.2006-0152. [CrossRef]

  • R. Khalil, F. Al-Sheyab, E. Khamaiseh, M. A. Halaweh and H. A. Abder-Rahman, Screening of mutations in the GCK gene in Jordanian maturity-onset diabetes of the young type 2 (MODY2) patients, Genet. Mol. Res. 8 (2009) 500-506; DOI: 10.4238/vol8-2gmr597. [CrossRef]

  • N. Tinto, A. Zagari, M. Capuano, A. De Simone, V. Capobianco, G. Daniele, M. Giugliano, R. Spadaro, A. Franzese and L. Sacchetti, Glucokinase gene mutations: Structural and genotype-phenotype analyses in MODY children from south Italy, PLoS One 3 (2008) 1870; DOI: 10.1371/journal.pone.0001870. [CrossRef]

  • P. Froguel, H. Zouali, N. Vionnet, G. Velho, M. Vaxillaire, F. Sun, S. Lesage, M. Stoffel, J. Takeda, P. Passa, M. A. Permutt, J. S. Beckmann, G. I. Bell and D. Cohen, Familial hyperglycemia due to mutations in glucokinase - definition of a subtype of diabetes mellitus, N. Engl. J. Med. 328 (1993) 697-702; DOI: 10.1056/NEJM199303113281005. [CrossRef]

  • E. R. Pearson, G. Velho, P. Clark, A. Stride, M. Shepherd, T. M. Frayling, M. P. Bulman, S. Ellard, P. Froguel and A. T. Hattersley, β-Cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1α and glucokinase mutations, Diabetes 50 (2001) S101-S107; DOI: 10.2337/diabetes.50.2007.S101. [CrossRef]

  • A. Stride, S. Ellard, P. Clark, L. Shakespeare, M. Salzmann, M. Shepherd and A. T. Hattersley, β-Cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1α mutation carriers, Diabetes Care 28 (2005) 1751-1756; DOI: 10.2337/diacare.28.7.1751. [CrossRef]

  • T. M. Frayling, J. C. Evans, M. P. Bulman, E. Pearson, L. Allen, K. Owen, C. Bingham, M. Hannemann, M. Shepherd, S. Ellard and A. T. Hattersley, β-Cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors, Diabetes 50 (2001) S94-S100; DOI: 10.2337/diabetes.50.2007.S94. [CrossRef]

  • I. D. Dukes, S. Sreenan, M. W. Roe, M. Levisetti, Y. P. Zhou, D. Ostrega, G. I. Bell, M. Pontoglio, M. Yaniv, L. Philipson and K. S. Polonsky, Defective pancreatic β-cell glycolytic signaling in hepatocyte nuclear factor-1α-deficient mice, J. Biol. Chem. 273 (1998) 24457-24464; DOI: 10.1074/jbc.273.38.24457. [CrossRef]

  • H. Wang, P. A. Antinozzi, K. A. Hagenfeldt, P. Maechler and C. B. Wollheim, Molecular targets of a human HNF1α mutation responsible for pancreatic β-cell dysfunction, EMBO J. 19 (2000) 4257-4264; DOI: 10.1093/emboj/19.16.4257. [CrossRef]

  • E. R. Pearson, W. G. Liddell, M. Shepherd, R. J. Corrall and A. T. Hattersley, Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor 1α gene mutations: evidence for pharmacogenetics in diabetes, Diabetic Med. 17 (2000) 543-545; DOI: 10.1046/j.1464-5491.2000.00305.x. [CrossRef]

  • E. R. Pearson, B. J. Starkey, R. J. Powell, F. M. Gribble, P. M. Clark and A. T. Hattersley, Genetic cause of hyperglycaemia and response to treatment in diabetes, Lancet 362 (2003) 1275-1281; DOI: 10.1016/S0140-6736(03)14571-0. [CrossRef]

  • P. Boileau, C. Wolfrum, D. Q. Shih, T. A. Yang, A. W. Wolkoff and M. Stoffel1, Decreased glibenclamide uptake in hepatocytes of hepatocyte nuclear factor-1α-deficient mice. A mechanism for hypersensitivity to sulfonylurea therapy in patients with Maturity-Onset Diabetes of the Young, Type 3 (MODY3), Diabetes 51 (2002) 343-348; DOI: 10.2337/diabetes.51.2007.S343. [CrossRef]

  • E. H. Hathout, B. N. Cockburn, J. W. Mace, J. Sharkney, J. Chen-Daniel and G. I. Bell, A case of hepatocyte nuclear factor-1α diabetes/MODY 3 masquerading as type 1 diabetes in a Mexican-American adolescent and responsive to a low dose of sulphonylurea (letter), Diabetes Care 22 (1999) 867-868; DOI: 10.2337/diacare.22.5.867. [CrossRef]

  • A. P. Lambert, S. Ellard, L. I. Allen, I. W. Gallen, K. M. Gillespie, P. Bingley and A. T. Hattersley, Identifying hepatic nuclear factor 1α mutations in children and young adults with a clinical diagnosis of type 1 diabetes, Diabetes Care 26 (2003) 333-337; DOI: 10.2337/diacare.26.2.333. [CrossRef]

  • M. Shepherd, E. R. Pearson, J. Houghton, G. Salt, S. Ellard and A. T. Hattersley, No deterioration in glycemic control in HNF-1α maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas, Diabetes Care 26 (2003) 3191-3192; DOI: 10.2337/diacare.26.11.3191-a. [CrossRef] [PubMed]

  • T. H. Lindner, P. R. Njolstad, Y. Horikawa, L. Bostad, G. I. Bell and O. Sovik, A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β, Hum. Mol. Genet. 8 (1999) 2001-2008; DOI: 10.1093/hmg/8.11.2001. [CrossRef]

  • E. R. Pearson, M. K. Badman, C. R. Lockwood, P. M. Clark, S. Ellard, C. Bingham and A. T. Hattersley, Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1α and -1β mutations, Diabetes Care 27 (2004) 1102-1107; DOI: 10.2337/diacare.27.5.1102. [CrossRef]

  • M. A. Maestro, S. F. Boj, R. F. Luco, C. E. Pierreux, J. Cabedo, J. M. Servitja, M. S. German, G. G. Rousseau, F. P. Lemaigre and J. Ferrer, Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas, Hum. Mol. Genet. 12 (2003) 3307-3314; DOI: 10.1093/hmg/ddg355. [CrossRef]

  • R. Masia, J. C. Koster, S. Tumini, F. Chiarelli, C. Colombo, C. G. Nichols and F. Barbetti, An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes, Diabetes 56 (2007) 328-336; DOI: 10.2337/db06-1275. [CrossRef]

  • M. A. Sperling, ATP-sensitive potassium channels - neonatal diabetes mellitus and beyond, N. Engl. J. Med. 355 (2006) 507-510; DOI: 10.1056/NEJMe068142. [CrossRef]

  • D. Enkvetchakul and C. G. Nichols, Gating mechanism of KATP channels: function fits form, J. Gen. Physiol. 5 (2003) 471-480; DOI: 10.1085/jgp.200308878. [CrossRef]

  • P. Proks, J. F. Antcliff, J. Lippiat, A. L. Gloyn, A. T. Hattersley and F. M. Ashcroft, Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features, Proc. Natl. Acad. Sci. USA 101 (2004) 17539-17544; DOI: 10.1073/pnas.0404756101. [CrossRef]

  • E. R. Pearson, I. Flechtner, P. R. Njølstad, M. T. Malecki, S. E. Flanagan, B. Larkin, F. M. Ashcroft, I. Klimes, E. Codner, V. Iotova, A. S. Slingerland, J. Shield, J. J. Robert, J. J. Holst, P. M. Clark, S. Ellard, O. Søvik, M. Polak and A. T. Hattersley, Neonatal diabetes international collaborative group, Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations, N. Engl. J. Med. 355 (2006) 467-477; DOI: 10.1056/NEJMoa061759. [CrossRef]

  • J. C. Koster, M. S. Remedi, C. Dao and C. G. Nichols, ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy, Diabetes 54 (2005) 2645-2654; DOI: 10.2337/diabetes.54.9.2645. [CrossRef] [PubMed]

  • A. P. Babenko, M. Polak, H. Cavé, K. Busiah, P. Czernichow, R. Scharfmann, J. Bryan, L. Aguilar-Bryan, M. Vaxillaire and P. Froguel, Activating mutations in the ABCC8 gene in neonatal diabetes mellitus, N. Engl. J. Med. 355 (2006) 456-466; DOI: 10.1056/NEJMoa055068. [CrossRef]

  • M. Rafiq, S. E. Flanagan, A. M. Patch, B. M. Shields, S. Ellard and A. T. Hattersley, The Neonatal diabetes international collaborative group, Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations, Diabetes Care 31 (2008) 204-209; DOI: 10.2337/dc07-1785. [CrossRef]

  • A. Zung, B. Glaser, R. Nimri and Z. Zadik, Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2, J. Clin. Endocrinol. Metab. 89 (2004) 5504-5507; DOI: 10.1210/jc.2004-1241. [CrossRef]

  • M. S. Remedi and C. G. Nichols, Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic β-cells, PLoS Med. 5 (2008) e206; DOI: 10.1371/journal.pmed.0050206. [CrossRef]

  • G. Sesti, E. Laratta, M. Cardellini, F. Andreozzi, S. Del Guerra, C. Irace, A. Gnasso, M. Grupillo, R. Lauro, M. L. Hribal, F. Perticone and P. Marchetti, The E23K variant of KCNJ11 encoding the pancreatic β-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes, J. Clin. Endocr. Metab. 91 (2006) 2334-2339; DOI: 10.1210/jc.2005-2323. [CrossRef]

  • J. Kirchheiner, I. Roots, M. Goldammer, B. Rosenkranz and J. Brockmöller, Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance, Clin. Pharmacokin. 44 (2005) 1209-1225; DOI: 10.2165/00003088-200544120-00002. [CrossRef]

  • A. Holstein, A. Plaschke, M. Ptak, E. H. Egberts, J. El-Din, J. Brockmöller and J. Kirchheiner, Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents, Br. J. Clin. Pharmacol. 60 (2005) 103-106; DOI: 10.1111/j.1365-2125.2005.02379.x. [CrossRef]

  • J. Kirchheiner, J. Brockmöller, I. Meineke, S. Bauer, W. Rohde, C. Meisel and I. Roots, Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers, Clin. Pharmacol. Ther. 71 (2002) 286-296; DOI: 10.1067/mcp.2002.122476. [CrossRef]

  • J. Kirchheiner, S. Bauer, I. Meineke, W. Rohde, V. Prang, C. Meisel, I. Roots and J. Brockmöller, Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and on the insulin and glucose response in healthy volunteers, Pharmacogenetics 12 (2002) 101-109; DOI: 10.1067/mcp.2002.122476. [CrossRef]

  • J. Kirchheiner, I. Meineke, G. Müller, S. Bauer, W. Rohde, C. Meisel, I. Roots and J. Brockmöller, Influence of CYP2C9 and CYP2D6 polymorphisms on pharmacokinetics of nateglinide in genotyped healthy volunteers, J. Clin. Pharmacokin. 43 (2004) 267-278; DOI: 10.2165/00003088-200443040-00005. [CrossRef]

  • Q. Huang, J. Y. Yin, X. P. Dai, Q. Pei, M. Dong, Z. G. Zhou, X. Huang, M. Yu, H. H. Zhou and Z. Q. Liu, IGF2BP2 variations influence repaglinide response and risk of type 2 diabetes in Chinese population, Acta Pharmacol. Sin. 31 (2010) 709-717; DOI: 10.1038/aps.2010.47. [CrossRef]

  • O. Bozkurt, A. de Boer, D. E. Grobbee, E. R. Heerdink, H. Burger and O. H. Klungel, Pharmacogenetics of glucose-lowering drug treatment: a systematic review, Mol. Diagn. Ther. 11 (2007) 291-302. [CrossRef] [PubMed]

  • Y. Shu, S. A. Sheardown, C. Brown, R. P. Owen, S. Zhang, R. A. Castro, A. G. Ianculescu, L. Yue, J. C. Lo, E. G. Burchard, C. M. Brett and K. M. Giacomini, Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action, J. Clin. Invest. 117 (2007) 1422-1431; DOI: 10.1172/JCI30558. [CrossRef]

  • D. S. Wang, J. W. Jonker, Y. Kato, H. Kusuhara, A. H. Schinke and Y. Sugiyama, Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin, J. Pharmacol. Exp. Ther. 302 (2002) 510-515; DOI: 10.1124/jpet.102.034140. [CrossRef]

  • N. Kimura, S. Masuda, Y. Tanihara, H. Ueo, M. Okuda, T. Katsura and K. Inui, Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1, Drug Metab. Pharmacokin. 20 (2005) 379-386; DOI: 10.2133/dmpk.20.379. [CrossRef]

  • E. R. Pearson, L. A. Donnelly, C. Kimber, A. Whitley, A. S. Doney, M. I. McCarthy, A. T. Hattersley, A. D. Morris and C. N. Palmer, Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study, Diabetes 56 (2007) 2178-2182; DOI: 10.2337/db07-0440. [CrossRef]

  • J. K. Wolford, K. A. Yeatts, S. K. Dhanjal, M. H. Black, A. H. Xiang, T. A. Buchanan and R. M. Watanabe, Sequence variation in PPARG may underlie differential response to troglitazone, Diabetes 54 (2005) 3319-3325; DOI: 10.2337/diabetes.54.11.3319. [PubMed] [CrossRef]

  • S. Snitker, R. M. Watanabe, I. Ani, A. H. Xiang, A. Marroquin, C. Ochoa, J. Goico, A. R. Shuldiner and T. A. Buchanan, Troglitazone in prevention of diabetes (TRIPOD) study, Changes in insulin sensitivity in response to troglitazone do not differ between subjects with and without the common, functional Pro12Ala PPAR-γ-2 gene variant: results from the troglitazone in prevention of diabetes (TRIPOD) study, Diabetes Care 27 (2004) 1365-1368; DOI: 10.2337/diacare.27.6.1365. [PubMed] [CrossRef]

  • M. Blüher, G. Lübben and R. Paschke, Analysis of the relationship between the Pro12Ala variant in the PPAR-γ2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes, Diabetes Care 26 (2003) 825-831; DOI: 10.2337/diacare.26.3.825. [CrossRef]

  • K. H. Zhang, Q. Huang, X. P. Dai, J. Y. Yin, W. Zhang, G. Zhou, H. H. Zhou and Z. Q. Liu, Effects of the peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) Thr394Thr and Gly482Ser polymorphisms on rosiglitazone response in Chinese patients with type 2 diabetes mellitus, J. Clin. Pharmacol. 50 (2010) 1022-1030; DOI: 10.1177/0091270009355159. [CrossRef]

  • H. J. Pan, P. Reifsnyder, D. E. Vance, Q. Xiao and E. H. Leiter, Pharmacogenetic analysis of rosiglitazone-induced hepatosteatosis in new mouse models of type 2 diabetes, Diabetes 54 (2005) 1854-1862; DOI: 10.2337/diabetes.54.6.1854. [CrossRef]

  • R. L. Jacobs, C. Devlin, I. Tabas and D. E. Vance, Targeted deletion of hepatic CTP: phosphocholine cytidyltransferase a in mice decreases plasma high density and very low density lipoproteins, J. Biol. Chem. 279 (2004) 47402-47410; DOI: 10.1074/jbc.M404027200. [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Amy Guppy, Mariam Jamal-Hanjani, and Lisa Pickering
Future Oncology, 2011, Volume 7, Number 6, Page 727
[2]
Chong Shen, Qin Meng, and Guoliang Zhang
Toxicology and Applied Pharmacology, 2012, Volume 258, Number 1, Page 19

Comments (0)

Please log in or register to comment.