Jump to ContentJump to Main Navigation

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2014: 1.227
5-year IMPACT FACTOR: 1.284
Rank 64 out of 255 in category Applied Mathematics in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.011
Source Normalized Impact per Paper (SNIP) 2014: 1.735
Impact per Publication (IPP) 2014: 1.515

Mathematical Citation Quotient (MCQ) 2014: 0.10

Open Access
VolumeIssuePage

Issues

Controllability and Observability of Linear Discrete-Time Fractional-Order Systems

Said Guermah1 / Said Djennoune1 / Maamar Bettayeb1

Laboratoire de Conception et Conduite des Systèmes de Production, Universitè Mouloud Mammeri de Tizi-Ouzou, BP 17 RP, Tizi-Ouzou1

Electrical & Computer Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates2

This content is open access.

Citation Information: International Journal of Applied Mathematics and Computer Science. Volume 18, Issue 2, Pages 213–222, ISSN (Print) 1641-876X, DOI: 10.2478/v10006-008-0019-6, June 2008

Publication History

Published Online:
2008-06-16

Controllability and Observability of Linear Discrete-Time Fractional-Order Systems

In this paper we extend some basic results on the controllability and observability of linear discrete-time fractional-order systems. For both of these fundamental structural properties we establish some new concepts inherent to fractional-order systems and we develop new analytical methods for checking these properties. Numerical examples are presented to illustrate the theoretical results.

Keywords: system modeling; discrete fractional state-space systems; reachability; controllability; observability; controllability and observability Gramians

  • Antsaklis P.J. and Michel A.N. (1997). Linear Systems, McGraw-Hill, New York.

  • Åström K. J. and Wittenmark B. (1996). Computer- Controlled Systems, Theory and Design, 3rd Ed., Prentice Hall Inc., New Jersey.

  • Axtell M. and Bise E. M. (1990). Fractional calculus applications in control systems, Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, USA, pp. 536-566.

  • Battaglia J. L., Cois O., Puigsegur L. and Oustaloup A. (2001). Solving an inverse heat conduction problem using a non-integer identified model, International Journal of Heat and Mass Transfer, 44(14): 2671-2680.

  • Bettayeb M. and Djennoune S. (2006). A note on the controllability and the observability of fractional dynamical systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Workshop Applications, Porto, Portugal, pp. 506-511.

  • Boukas E.K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability, Mathematical Problems in Engineering, bf 2006 (ID42489): 1-10.

  • Cois O., Oustaloup A., Battaglia E. and Battaglia J.L. (2002). Non integer model from modal decomposition for time domain identification, 41st IEEE CDC'2002 Tutorial Workshop 2, Las Vegas, USA.

  • Debeljković D. Lj., Aleksendrić M., Yi-Yong N. and Zhang Q. L. (2002). Lyapunov and non-Lyapunov stability of linear discrete time delay systems, Facta Universitatis, Series: Mechanical Engineering 1(9): 1147-1160.

  • Dorĉák L., Petras I. and Kostial I. (2000). Modeling and analysis of fractional-order regulated systems in the state-space, Procedings of International Carpathian Control Conference, High Tatras, Slovak Republic, pp. 185-188.

  • Dzieliński A. and Sierociuk D. (2005). Adaptive feedback control of fractional order discrete state-space systems, Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'05), Vienna Austria, pp. 804-809.

  • Dzieliński A. and Sierociuk D. (2006). Observer for discrete fractional order systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation Applications, Porto, Portugal, pp. 524-529.

  • Dzieliński A. and Sierociuk D. (2007). Reachability, controllability and observability of the fractional order discrete statespace system, Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR'2007, Szczecin, Poland, pp. 129-134.

  • Gorenflo R. and Mainardi F. (1997). Fractional calculus: Integral and differential equations of fractional order, in (A. Carpintieri and F. Mainardi, Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Vienna, New York, Springer Verlag.

  • Hanyga A. (2003). Internal variable models of viscoelasticity with fractional relaxation laws, Proceddings of Design Engineering Technical Conference, Mechanical Vibration and Noise, 48395, American Society of Mechanical Engineers, Chicago, USA.

  • Hotzel R. and Fliess M. (1998). On linear system with a fractional derivation: Introductory theory and examples, Mathematics and Computers in Simulation 45(3): 385-395.

  • Ichise M., Nagayanagi Y. and Kojima T. (1971). An analog simulation of non integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry 33(2): 253-265. [CrossRef]

  • Kilbas A. A., Srivasta H.M. and Trujillo J. J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

  • Lakshmikantham D. T. V. (1998). Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York.

  • Manabe S. (1960). The non-integer integral and its application to control systems, Japanese Institute of Electrical Engineers Journal 80(860): 589-597.

  • Matignon D. (1994). Reprèsentation en variables d'ètat de modèles de guides d'ondes avec dèrivation fractionnaire, Ph.D. thesis, Universitè Paris XI, France.

  • Matignon D., d'Andrèa Novel B., Depalle P. and Oustaloup A. (1994). Viscothermal Losses in Wind Instruments: A Non-Integer Model, Academic Verlag, Berlin.

  • Matignon D. and d'Andrèa-Novel B. (1996). Some results on controllability and observability of finite-dimensional fractional differential systems, Proceedings of the IMACS, IEEE SMC Conference, Lille, France, pp. 952-956.

  • Matignon D. (1996). Stability results on fractional differential with application to control processing, Proceedings of the IAMCS, IEEE SMC Conference, Lille, France, pp. 963-968.

  • Miller K. S. and Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations,Wiley, New York.

  • Mittag-Leffler G. (1904). Sur la reprèsentation analytique d'une branche uniforme d'une fonction monogène, Acta Mathematica 29: 10-181.

  • Oldham K. B. and Spanier J. (1974). The Fractional Calculus, Academic Press, New York.

  • Oustaloup A. (1983). Systèmes asservis linèaires d'ordre fractionnaire, Masson, Paris.

  • Oustaloup A. (1995). La Dèrivation non entière: Thèorie, synthèse et applications, Hermès, Paris.

  • Peng Y., Guangming X. and Long W. (2003). Controllability of linear discrete-time systems with time-delay in state, available at http://dean.pku.edu.cn/bksky/1999tzlwj/4.pdf

  • Podlubny I. (1999). Fractional Differential Equations, Academic Press, San Diego.

  • Raynaud H. F., Zergainoh A. (2000). State-space representation for fractional-order controllers, Automatica 36(7): 1017-1021. [CrossRef]

  • Sabatier J., Cois O. and Oustaloup A. (2002). Commande de systèmes non entiers par placement de pôles, Deuxième Confèrence Internationale Francophone d'Automatique, CIFA, Nantes, France.

  • Samko S. G., Kilbas A. A. and Marichev O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam.

  • Sierociuk D. and Dzieliński A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140.

  • Valerio D. and Sa da Costa J. (2004). Non-integer order control of a flexible robot, Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, FDA'04, Bordeaux, France.

  • Vinagre B. M., Monje C. A. and Caldero A. J. (2002). Fractional order systems and fractional order actions, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, 41st IEEE CDC, Las Vegas, USA.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hao Zhang, Diyi Chen, Bei-Bei Xu, and Rui Zhou
Journal of Circuits, Systems and Computers, 2015, Volume 24, Number 06, Page 1550087
[2]
Hao Zhang, Di-Yi Chen, Kun Zhou, and Yi-Chen Wang
Chinese Physics B, 2015, Volume 24, Number 3, Page 030203
[3]
K. Balachandran, V. Govindaraj, M. Rivero, and J.J. Trujillo
Applied Mathematics and Computation, 2015, Volume 257, Page 66
[4]
Yiheng Wei, Qing Gao, Cheng Peng, and Yong Wang
International Journal of Control, Automation and Systems, 2014, Volume 12, Number 6, Page 1180
[5]
Ravi P. Agarwal, Bashir Ahmad, Ahmed Alsaedi, and Hana Al-Hutami
Abstract and Applied Analysis, 2014, Volume 2014, Page 1
[6]
Krishnan Balachandran and Venkatesan Govindaraj
Optimization, 2014, Volume 63, Number 8, Page 1267
[7]
Lihong Zhang, Bashir Ahmad, and Guotao Wang
Abstract and Applied Analysis, 2014, Volume 2014, Page 1
[8]
Yang Liu, Hong-Wei Chen, and Jian-Quan Lu
International Journal of Systems Science, 2014, Volume 45, Number 11, Page 2411
[9]
Yuan-Ming Liu and I-Kong Fong
International Journal of Systems Science, 2012, Volume 43, Number 4, Page 610
[10]
Dorota Mozyrska and Ewa Pawłuszewicz
International Journal of Control, 2012, Volume 85, Number 2, Page 213
[11]
HernánR Henríquez and Claudio Cuevas
Advances in Difference Equations, 2010, Volume 2010, Number 1, Page 695290
[12]
Dominik Sierociuk, Inés Tejado, and Blas M. Vinagre
Signal Processing, 2011, Volume 91, Number 3, Page 542
[13]
Hernán R. Henríquez and Claudio Cuevas
Advances in Difference Equations, 2010, Volume 2010, Page 1
[14]
Bartosz Bandrowski, Anna Karczewska, and Piotr Rozmej
International Journal of Applied Mathematics and Computer Science, 2010, Volume 20, Number 2
[15]
Davide Verotta
Journal of Pharmacokinetics and Pharmacodynamics, 2010, Volume 37, Number 2, Page 209

Comments (0)

Please log in or register to comment.