Busłowicz, M. (2008a). Stability of linear continuous-time fractional systems of commensurate order, *Pomiary, Automatyka, Robotyka:* 475-484, (on CD-ROM, in Polish); *Journal of Automation, Mobile Robotics and Intelligent Systems* **3**(1): 16-21.

Busłowicz, M. (2008b). Frequency domain method for stability analysis of linear continuous-time fractional systems, *in* K. Malinowski and L. Rutkowski (Eds.), *Recent Advances in Control and Automation*, Academic Publishing House EXIT, Warsaw, pp. 83-92.

Busłowicz, M. (2008c). Robust stability of convex combination of two fractional degree characteristic polynomials, *Acta Mechanica et Automatica* **2**(2): 5-10.

Busłowicz, M. (2008d). Practical robust stability of positive fractional scalar discrete-time systems, *Zeszyty Naukowe Politechniki Saląskiej: Automatyka* **151**: 25-30, (in Polish).

Chen, Y.-Q., Ahn, H.-S. and Podlubny, I. (2006). Robust stability check of fractional order linear time invariant systems with interval uncertainties, *Signal Processing* **86**(10): 2611-2618.

Das, S. (2008). *Functional Fractional Calculus for System Identification and Controls*, Springer, Berlin.

Dzieliński, A. and Sierociuk, D. (2006). Stability of discrete fractional state-space systems, *Proceedings of the 2-nd IFAC Workshop on Fractional Differentiation and Its Applications, IFAC FDA'06, Porto, Portugal*, pp. 518-523.

Farina, L. and Rinaldi, S. (2000). *Positive Linear Systems: Theory and Applications*, J. Wiley, New York, NY.

Gałkowsk, i K. and Kummert, A. (2005). Fractional polynomials and nD systems, *Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS'2005, Kobe, Japan*, (on CD-ROM).

Gałkowski, K., Bachelier, O. and Kummert, A. (2006). Fractional polynomial and nD systems—A continuous case, *Proceedings ot the IEEE Conference on Decision and Control, San Diego, CA, USA*, pp. 2913-2917.

Kaczorek, T. (2002). *Positive 1D and 2D Systems*, Springer-Verlag, London.

Kaczorek, T. (2007a). Reachability and controllability to zero of positive fractional discrete-time systems, *Machine Intelligence and Robotic Control* **6**(4): 139-143. [Web of Science]

Kaczorek, T. (2007b). Reachability and controllability to zero of cone fractional linear systems, *Archives of Control Sciences* **17**(3): 357-367.

Kaczorek, T. (2007c). Choice of the forms of Lyapunov functions for positive 2D Roesser model, *International Journal of Applied Mathematics and Computer Science* **17**(4): 471-475. [Web of Science]

Kaczorek, T. (2008a). Fractional positive continuous-time linear systems and their reachability, *International Journal of Applied Mathematics and Computer Science* **18**(2): 223-228. [Web of Science]

Kaczorek, T. (2008b). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, *Journal of Automation and System Engineering* **42**(6-7-8): 769-787.

Kaczorek, T. (2008c). Fractional 2D linear systems, *Journal of Automation, Mobile Robotics and Intelligent Systems* **2**(2): 5-9.

Kaczorek, T. (2008d). Positive different orders fractional 2D linear systems, *Acta Mechanica et Automatica* **2**(2): 51-58.

Kaczorek, T. (2008e). Practical stability of positive fractional discrete-time systems, *Bulletin of the Polish Academy of Sciences: Technical Sciences* **56**(4): 313-317.

Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2006). *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam.

Podlubny, I. (1999). *Fractional Differential Equations*, Academic Press, San Diego, CA.

Sabatier, J., Agrawal, O. P. and Machado, J. A. T. (Eds.) (2007). *Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering*, Springer, London.

Sierociuk, D. (2007). *Estimation and Control of Discrete Dynamical Systems of Fractional Order in State Space*, Ph.D. thesis, Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, (in Polish).

Vinagre, B. M., Monje, C. A. and Calderon, A. J. (2002). Fractional order systems and fractional order control actions, *Proceedings of the IEEE CDC Conference Tutorial Workshop: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, NY*, pp. 15-38.

## Comments (0)