Abdalkhania, J. (1990). Numerical approach to the solution of Abel integral equations of the second kind with nonsmooth solution, *Journal of Computational and Applied Mathematics* 29(3): 249-255.[CrossRef]

Akansu, A.N. and Haddad, R.A. (1981). *Multiresolution Signal Decomposition*, Academic Press Inc., San Diego, CA.

Bagley, R.L. and Torvik, P.J. (1985). Fractional calculus in the transient analysis of viscoelastically damped structures, *American Institute of Aeronautics and Astronautics Journal* 23(6): 918-925.

Baillie, R.T. (1996). Long memory processes and fractional integration in econometrics, *Journal of Econometrics* 73(1): 5-59.

Baratella, P. and Orsi, A.P. (2004). New approach to the numerical solution of weakly singular Volterra integral equations, *Journal of Computational and Applied Mathematics* 163(2): 401-418.

Brunner, H. (1984). The numerical solution of integral equations with weakly singular kernels, *in* D.F. GriMths (Ed.), *Numerical Analysis*, Lecture Notes in Mathematics, Vol. 1066, Springer, Berlin, pp. 50-71.

Chen, C.F. and Hsiao, C.H. (1997). Haar wavelet method for solving lumped and distributed parameter systems, *IEE Proceedings: Control Theory and Applications* 144(1): 87-94.

Chena, W., Suna, H., Zhang, X. and Korôsak, D. (2010). Anomalous diffusion modeling by fractal and fractional derivatives, *Computers & Mathematics with Applications* 59(5): 265-274.[Web of Science]

Chiodo, S., Chuev, G.N., Erofeeva, S.E., Fedorov, M.V., Russo, N. and Sicilia, E. (2007). Comparative study of electrostatic solvent response by RISM and PCM methods, *International Journal of Quantum Chemistry* 107: 265-274.[Web of Science]

Chow, T.S. (2005). Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, *Physics Letters A* 342(1-2): 148-155.

Chuev, G.N., Fedorov, M.V. and Crain, J. (2007). Improved estimates for hydration free energy obtained by the reference interaction site model, *Chemical Physics Letters* 448: 198-202.[Web of Science]

Chuev, G.N., Fedorov, M.V., Chiodo, S., Russo, N. and Sicilia, E. (2008). Hydration of ionic species studied by the reference interaction site model with a repulsive bridge correction, *Journal of Computational Chemistry* 29(14): 2406-2415.[PubMed] [Web of Science] [CrossRef]

Chuev, G.N., Chiodo, S., Fedorov, M.V., Russo, N. and Sicilia, E. (2006). Quasilinear RISM-SCF approach for computing solvation free energy of molecular ions, *Chemical Physics Letters* 418: 485-489.

Dixon, J. (1985). On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solution, *BIT* 25(4): 624-634.

Hsiao, C.H. and Wu, S.P. (2007). Numerical solution of timevarying functional differential equations via Haar wavelets, *Applied Mathematics and Computation* 188(1): 1049-1058.[Web of Science]

Lepik, Ü. and Tamme, E. (2004). Application of the Haar wavelets for solution of linear integral equations, *Dynamical Systems and Applications, Proceedings, Antalya, Turkey*, pp. 494-507.

Lepik, Ü. (2009). Solving fractional integral equations by the Haar wavelet method, *Applied Mathematics and Computation* 214(2): 468-478.

Li, C. and Wang, Y. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations, *Computers & Mathematics with Applications* 57(10): 1672-1681.[CrossRef]

Magin, R.L. (2004). Fractional calculus in bioengineering. Part 2, *Critical Reviews in Bioengineering* 32: 105-193.

Mainardi, F. (1997). Fractional calculus: ‘Some basic problems in continuum and statistical mechanics’, *in* A. Carpinteri and F. Mainardi (Eds.), *Fractals and Fractional Calculus in Continuum Mechanics*, Springer-Verlag, New York, NY.

Mandelbrot, B. (1967). Some noises with 1/f spectrum, a bridge between direct current and white noise, *IEEE Transactions on Information Theory* 13: 289-298.

Maleknejad, K. and Mirzaee, F. (2005). Using rationalized Haar wavelet for solving linear integral equations, *Applied Mathematics and Computation* 160(2): 579-587.

Meral, F.C., Royston, T.J. and Magin, R. (2010). Fractional calculus in viscoelasticity: An experimental study, *Communications in Nonlinear Science and Numerical Simulation* 15(4): 939-945.[Web of Science] [CrossRef]

Metzler, R. and Nonnenmacher, T.F. (2003). Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, *International Journal of Plasticity* 19(7): 941-959.[CrossRef]

Miller, K. and Feldstein, A. (1971). Smoothness of solutions of Volterra integral equations with weakly singular kernels, *SIAM Journal on Mathematical Analysis* 2: 242-258.[CrossRef]

Miller, K. and Ross, B. (1993). *An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley and Sons, New York, NY.

Pandey, R.K., Singh, O.P. and Singh, V.K. (2009). Efficient algorithms to solve singular integral equations of Abel type, *Computers and Mathematics with Applications* 57(4): 664-676.

Podlubny, I. (1999). *Fractional Differential Equations*, Academic Press, New York, NY.

Strang, G. (1989). Wavelets and dilation equations, *SIAM Review* 31(4): 614-627.[CrossRef]

Vainikko, G. and Pedas, A. (1981). The properties of solutions of weakly singular integral equations, *Journal of the AustralianMathematical Society, Series B: AppliedMathematics* 22: 419-430.

Vetterli, M. and Kovacevic, J. (1995). *Wavelets and Subband Coding*, Prentice Hall, Englewood Cliffs, NJ.

Yousefi, S.A. (2006). Numerical solution of Abel's integral equation by using Legendre wavelets, *Applied Mathematics and Computation* 175(1): 574-580.

Zaman, K.B.M.Q. and Yu, J.C. (1995). Power spectral density of subsonic jetnoise, *Journal of Sound and Vibration* 98(4): 519-537.

## Comments (0)