Balasubramaniam, P., Lakshmanan, S. and Rakkiyappan, R. (2009). Delay-interval dependent robust stability criteria for stochastic neural networks with linear fractional uncertainties, *Neurocomputing* **72**(16-18): 3675-3682. [CrossRef] [Web of Science]

Balasubramaniam, P. and Lakshmanan, S. (2011). Delay-interval dependent robust stability criteria for neutral stochastic neural networks with polytopic and linear fractional uncertainties, *International Journal of Computer Mathematics* **88**(10): 2001-2015. [Web of Science] [CrossRef]

Boyd, S., El Ghaouli, L., Feron, E. and Balakrishnan, V. (1994). *Linear Matrix Inequalities in System and Control Theory*, SIAM, Philadelphia, PA.

Chen, W. Y. (2002). Some new results on the asymptotic stability of uncertain systems with time-varying delays, *International Journal of Systems Science* **33**(11): 917-21. [CrossRef]

Chen, W. H., Guan, Z. H. and Lu, X. M. (2004). Delay-dependent robust stabilization and *H*_{∞} control of uncertain stochastic systems with time-varying delay, *IMA Journal of Mathematical Control Information* **21**(3): 345-58. [CrossRef]

Chen, W. H., Guan, Z. H. and Lu, X. M. (2005). Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: An LMI approach, *Systems & Control Letters* **54**(6): 547-555. [CrossRef]

Chesi, G., Garulli, A., Tesi, A. and Vicino, A. (2007). Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions, *Automatica* **43**(2): 309-316. [CrossRef] [Web of Science]

Geromel, J. C. and Colaneri, P. (2006). Robust stability of time varying polytopic systems, *Systems & Control Letters* **55**(1): 81-85. [CrossRef]

Gu, K., Kharitonov, V. L. and Chen, J. (2003). *Stability of Time-delay Systems*, Birkhauser, Boston, MA.

Gu, K. (2000). An integral inequality in the stability problem of time-delay systems, *Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia*, pp. 2805-2810.

Hale, J. K. and Verduyn Lunel, S. M. (1993). *Introduction to Functional Differential Equations*, Springer, New York, NY.

He, Y., Wang, Q.-G. and Lin, C. (2006). An improved *H*_{∞} filter design for systems with time-varying interval delay, *IEEE Transactions on Circuits and Systems II: Express Briefs* **53**(11): 1235-1239.

He, Y., Wu, M., She, J. H. and Liu, G. P. (2004). Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, *IEEE Transactions on Automatic Control* **49**(5): 828-832. [Web of Science] [CrossRef]

He, Y., Zhang, Y., Wu, M. and She, J.-H. (2010). Improved exponential stability for stochastic Markovian jump systems with nonlinearity and time-varying delay, *International Journal of Robust and Nonlinear Control* **20**(1): 16-26. [CrossRef]

Huang, Y. and Zhou, K. (2000). Robust stability of uncertain time-delay systems, *IEEE Transactions on Automatic Control* **45**(11): 2169-2173.

Ivanesu, D., Dion, J., Dugard, L. and Niculiscu, S. I. (2000). Dynamical compensation for time-delay systems: An LMI approach, *International Journal of Robust and Nonlinear Control* **10**(8): 611-628. [CrossRef]

Jiang, X. and Han, Q.-L. (2008). New stability for linear systems with interval time-varying delay, *Automatica* **44**(10): 2680-2685. [CrossRef]

Jiang, X. and Han, Q.-L. (2006). Delay-dependent robust stability for uncertain linear systems with interval time-varying delay, *Automatica* **42**(6): 1059-1065. [Web of Science] [CrossRef]

Kolmanoskii, V. B. and Myshkis, A. D. (1992). *Applied Theory of Functional Differential Equations*, Kluwer Academic Publishers, Dordrecht.

Kwon, O. M. and Park, J. H. (2008). Exponential stability for time-delay systems with interval time-varying delays and nonlinear perturbations, *Journal of Optimization Theory and Applications* **139**(2): 277-293. [CrossRef]

Kwon, O. M., Lee, S. M. and Park, J. H. (2010). Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays, *Physics Letters A* **374**(10): 1232-1241. [Web of Science]

Kim, J. H. (2001). Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty, *IEEE Transactions on Automatic Control* **46**(5): 789-792 [Web of Science]

Liu, X. W. and Zhang, H. B. (2005). New stability criterion of uncertain systems with time-varying delay, *Chaos, Solitons, Fractals* **26**(5): 1343-1348. [Web of Science]

Li, H., Chen, B., Zhou, Q. and Lin, C. (2008). Delay-dependent robust stability for stochastic time-delay systems with polytopic uncertainties, *International Journal of Robust and Nonlinear Control* **18**(15): 1482-1492. [CrossRef]

Li, T., Guo, L. and Sun, C. (2007). Robust stability for neural networks with time-varying delays and linear fractional uncertainties, *Neurocomputing* **71**(1-3): 421-427.

Liu, P.-L. (2005). On the stability of neutral-type uncertain systems with multiple time delay, *International Journal of Applied Mathematics and Computer Science* **15**(1):221-229.

Mahmoud, M. S. and Al-Muthairi, N. F. (1994). Quadratic stabilization of continuous time systems with state delay and norm-bounded time-varying uncertainties, *IEEE Transactions on Automatic Control* **39**(10): 2135-2139. [CrossRef]

Miyamura, A. and Aihara, K. (2004). Delay-depedent robust stability of uncertain delayed stochastic systems: An LMI-based, *Proceedings of the 5th Asian Control Conference, Grand Hyatt-Melbourne, Australia*, pp. 449-55.

Ramos, D. C. W. and Peres, P. L. D. (2001). A less conservative LMI condition for the robust stability of discrete-time uncertain systems, *Systems & Control Letters* **43**(5): 371-378. [Web of Science] [CrossRef]

Shi, P. and Boukas, E. K. (1997). *H*_{∞} control for Markovian jumping linear systems with parametric uncertainty, *Journal of Optimization Theory and Applications* **95**(1): 75-99. [CrossRef]

Tian, E., Yue, D. and Gu, Z. (2010). Robust *H*_{∞} control for nonlinear systems over network: A piecewise analysis method, *Fuzzy Sets and Systems* **161**(21): 2731-2745. [Web of Science]

Xia, Y. and Jia, Y. (2003). Roubst control of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functionals, *Systems & Control Letters* **50**(3):183-193. [CrossRef]

Xia, Y. and Jia, Y. (2002). Robust stability functionals of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functions, *International Journal of Control* **75**(16-17): 1427-1434. [Web of Science] [CrossRef]

Xu, S., Lam, J., Zou, Y., Zhong, N., Gao, H. and Wang, C. (2004). Robust stabilization for stochastic time-delay systems with polytopic uncertainties, *International Conference on Control, Automation, Robotics and Vision, Kunming, China*, pp. 1747-1750.

Xue, X. and Qiu, D. (2000). Robust *H*_{∞}-compensator design for time-delay systems with norm-bounded time-varying uncertainties, *IEEE Transactions on Automatic Control* **45**(7): 1363-1369.

Yue, D., Peng, C. and Tang, G. Y. (2006). Guaranteed cost control of linear systems over networks with state and input quantisations, *IEE Proceedings of Control Theory and Applications* **153**(6): 658-664.

Yan, H. C., Huang, X. H., Zhang, H. and Wang, M. (2009). Delay-dependent robust stability criteria of uncertain stochastic systems with time-varying delay, *Chaos, Solitons, Fractals* **40**(4): 1668-1679.

Yue, D. and Han, Q. L. (2005). Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity and Markovian switching, *IEEE Transactions on Automatic Control* **50**(2): 217-222. [Web of Science]

Zhang, Y., He, Y. and Wu, M. (2009). Delay-dependent robust stability for uncertain stochastic systems with interval time-varying delay, *Acta Automatica Sinica* **35**(5): 577-582.

Zhang, Y., He, Y. and Wu, M. (2008). Improved delay-dependent robust stability for uncertain stochastic systems with time-varying delay, *Proceedings of the 27th Chinese Control Conference, Kunming, Yunnan, China*, pp. 764-768.

Zhou, S., Li, T., Shao, H. and Zheng, W. X. (2006). Output feedback *H*_{∞}control for uncertain discrete-time hyperbolic fuzzy sysems, *Engineering Applications of Artificial Intelligence* **19**(5): 487-499. [CrossRef]

## Comments (0)