Joint queue-perturbed and weakly coupled power control for wireless backbone networks : International Journal of Applied Mathematics and Computer Science Jump to ContentJump to Main Navigation
Show Summary Details

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

IMPACT FACTOR 2015: 1.037
5-year IMPACT FACTOR: 1.151
Rank 83 out of 254 in category Applied Mathematics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 1.025
Source Normalized Impact per Paper (SNIP) 2015: 1.674
Impact per Publication (IPP) 2015: 1.648

Mathematical Citation Quotient (MCQ) 2014: 0.10

Open Access
See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

Joint queue-perturbed and weakly coupled power control for wireless backbone networks

1Council for Scientific and Industrial Research (CSIR) Tshwane University of Technology, Box 395, Pretoria 0001, South Africa

2University of Paris-Est Aile Vicat bureau V426, 6-8 avenue Blaise Pascal, 77454 Marne la Vallee cedex 2, Creteil, France

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

Citation Information: International Journal of Applied Mathematics and Computer Science. Volume 22, Issue 3, Pages 749–764, ISSN (Online) 2083-8492, DOI: 10.2478/v10006-012-0056-z, September 2012

Publication History

Published Online:


Wireless Backbone Networks (WBNs) equipped with Multi-Radio Multi-Channel (MRMC) configurations do experience power control problems such as the inter-channel and co-channel interference, high energy consumption at multiple queues and unscalable network connectivity. Such network problems can be conveniently modelled using the theory of queue perturbation in the multiple queue systems and also as a weak coupling in a multiple channel wireless network. Consequently, this paper proposes a queue perturbation and weakly coupled based power control approach forWBNs. The ultimate objectives are to increase energy efficiency and the overall network capacity. In order to achieve this objective, a Markov chain model is first presented to describe the behaviour of the steady state probability distribution of the queue energy and buffer states. The singular perturbation parameter is approximated from the coefficients of the Taylor series expansion of the probability distribution. The impact of such queue perturbations on the transmission probability, given some transmission power values, is also analysed. Secondly, the inter-channel interference is modelled as a weakly coupled wireless system. Thirdly, Nash differential games are applied to derive optimal power control signals for each user subject to power constraints at each node. Finally, analytical models and numerical examples show the efficacy of the proposed model in solving power control problems in WBNs.

Keywords: decentralized power control; singular perturbation theory; weak coupling theory; wireless backbone networks; optimal control theory

  • Adisehu, H. and Parulkar, G. and Varghes, G. (1996). A reliable and scalable striping protocol, IEEE Signal Communication(SIGCOMM) 43(1):123-134.

  • Arora, A. and Krunz, M. (2007). Power controlled MAC for ad hoc networks with directional antennas, Elsevier Ad HocNetworks 5(2): 145-161.

  • Avrachenkov, K.E. (1999). Analytic Perturbation Theory and Its Applications, Ph.D. thesis, University of South Australia,Adelaide.

  • Bruno, R., Conti, M. and Gregori, E. (2005). Mesh networks: Commodity multi-hop ad hoc networks, IEEE CommunicationsMagazine 43(3): 123-134.

  • Chen, L., Zhang, Q., Li, M. and Jia, W. (2007). Joint topology control and routing in IEEE 802.11 based multiradio multichannel mesh networks, IEEE Transactions on VehicularTechnology 56(5): 3123-3136.

  • Chydzi´nski, A. and Chr´ost, L. (2011). Analysis of AQM queues with queue size based packet dropping, International Journalof Applied Mathematics and Computer Science 21(3): 567-577, DOI:10.2478/v10006-011-0045-7. [CrossRef]

  • Delebecque, F. and Quadrat, J. (1981). Optimal control of Markov chains admitting strong and weak interactions, Automatica17(2): 281-296. [CrossRef]

  • El-Azouzi, R. and Altman, E. (2003). A queuing analysis of packet dropping over a wireless link with retransmissions, in M. Conti, S. Giordano, E. Gregori and S. Olariu (Eds.), Personal Wireless Communications, Lecture Notes in Computer Science, Vol. 2775, Springer, Berlin, pp. 321- 33.

  • Engim Inc. (2004). Multiple Channel 802.11 Chipset,

  • Gajic, Z. and Shen, X. (1993). Parallel Algorithms for Optimal Control of Large Scale Linear Systems, Springer-Verlag,London.

  • Ishmael, J., Bury, S., Pezaros, D. and Race, N. (2008). Rural community wireless networks, IEEE Internet ComputingJournal 12(4): 22-29.

  • Jittorntrum, K. (1978). An implicit function theorem, Journal of Optimization Theory and Applications 25(4):285-288.

  • Klues, K., Xing, G. and C. Lu, C. (2006). A unified architecture for flexible radio power management in wireless sensor networks, Technical Report WUCSE-2006-06, Washington University in St. Louis, MO.

  • Li, N. and Hou, J.C. (2004). FLSS: A fault-tolerant topology control algorithm for wireless networks, Proceedings of theIEEE MobiCom Conference, New York, NY, USA. pp. 275-286.

  • Li, N. and Hou, J.C. (2005). Localized topology control algorithms for heterogeneous wireless networks, IEEE/ACMTransactions on Networks 13(6): 1-6.

  • Mukaidani, H. (2009). Soft-constrained stochastic Nash games for weakly coupled large-scale systems, Automatica 45(1): 1272-1279. [CrossRef] [Web of Science]

  • Olwal, T.O., van Wyk, B.J., Djouani, K., Hamam, Y., Siarry, P and Ntlatlapa, P. (2009a). Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks, Proceedings of the Ad Hoc-Now 2009 Conference, Murcia, Spain, pp. 284-297.

  • Olwal, T.O., van Wyk, B.J., Djouani, K., Hamam, Y., Siarry, P and Ntlatlapa, P. (2009b). Interference-aware power control for multi-radio multi-channel wireless mesh networks, Proceedings of the IEEE Africon 2009 Conference,Nairobi, Kenya, pp. 1-6.

  • Olwal, T.O., van Wyk, B.J., Djouani, K., Hamam, Y., Siarry, P and Ntlatlapa, P. (2009c). A multiple-state based power control for multi-radio multi-channel wireless mesh networks, World Academy of Science, Engineering and Technology:International Journal of Computer Science 4(1): 53-61.

  • Olwal, T.O. (2010). Decentralized Dynamic Power Control for Wireless Backbone Mesh Networks, Ph.D. thesis, Universityof Paris-Est, Creteil.

  • Ramamurthi, V., Reaz, A., Dixit, S., and Mukherjee, B. (2008). Link scheduling and power control in wireless mesh networks with directional antennas, Proceedings of the IEEECommunication Conference 2008, Beijing, China, pp. 4835-4839.

  • Sagara, M., Mukaidani, H. and Yamamoto, T. (2008). efficient numerical computations of soft constrained nash strategy for weakly coupled large-scale systems, Journal of Computers3(9): 2-10.

  • Shen, X. and Gajic, Z. (1990). Optimal reduced solution of the weakly coupled discrete Riccati equation, IEEE Transactionson Automatic Control 35(10): 1160-1162.

  • Schweitzer, P.J. (1986). Perturbation series expansions for nearly completely-decomposable Markov chains in O.J. Boxma, J.W. Cohen and H.C. Tijms (Eds.), Teletraffic Analysis andComputer Performance Evaluation, Elsevier Science Publishers, Amsterdam, pp. 319-328.

  • Sheth, A. and Han, R. (2005). SHUSH: Reactive transmit power control for wireless MAC Protocols, Proceedings of the1st IEEE International Conference on the Wireless Internet(WICON), Budapest, Hungary, pp. 18-25.

  • Sorooshyari, S. and Gajic, Z. (2008). Autonomous dynamic power control for wireless networks: User-centric and network-centric consideration, IEEE Transactions onWireless Communication 7(3): 1004-1015.

  • Tseng, Y.-C., Wu, S.-L., Lin, C.-Y and Shen, J.-P. (2001). A multi-channel MAC protocol with power control for multihop ad hoc networks, Proceedings of the Distributed ComputingSystems Workshop, Boston, MA, USA, pp. 419-424.

  • Wang, K., Chiasserini, C.F., Proakis, J.G. and Rao, R.R. (2006). Joint scheduling and power control supporting multicasting in wireless ad hoc networks, Elsevier Ad Hoc Networks4: 532-546.

  • Zhu, H., Lu, K and Li,M. (2008). Distributed topology control in multi-channel multi-radio mesh networks, Proceedings ofthe IEEE International Communication Conference, Beijing,China, pp. 2958-2962.

Comments (0)

Please log in or register to comment.