Jump to ContentJump to Main Navigation

Animal Migration

1 Issue per year


VERSITA Emerging Science

Open Access

Open Access

Estimating geolocator accuracy for a migratory songbird using live ground-truthing in tropical forest

1 / Calandra Q. Stanley1 / Kevin C. Fraser1 / Maggie M. MacPherson1 / Garth Casbourn1 / Peter P. Marra2 / Colin E. Studds3 / Nora Diggs2 / Bridget J.M. Stutchbury1

1Dept. of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada, M3J 1P3

2Smithsonian Conservation Biology Institute, Migratory Bird Center, National Zoological Park, Washington, D.C., USA, 20008

3ARC Centre of Excellence for Environmental Decisions, the NERP Environmental Decisions Hub, Centre for Biodiversity & Conservation Science, University of Queensland, Brisbane, Queensland 4072

This content is open access.

Citation Information: Animal Migration. Volume 1, Pages 31–38, ISSN (Online) 2084-8838, DOI: 10.2478/ami-2013-0001, February 2013

Publication History

Received:
2012-11-03
Accepted:
2012-12-28
Published Online:
2013-02-06

This article offers supplementary material which is provided at the end of the article.

Abstract

Miniaturized light-level geolocators allow year-round tracking of small migratory birds, but most studies use calibration only at breeding sites to estimate geographic positions. Ground-truthing of positions in tropical habitat is needed to determine how accurate breeding site calibrations (i.e. sun elevations) are for estimating location of winter sites. We tested the accuracy of geographic assignments using geolocator data collected from Wood Thrushes (Hylocichla mustelina) in Central America. For a given light threshold, sun elevation angle was higher in the tropics than at breeding sites and also varied significantly at tropical winter sites between wet (Oct- Dec) and dry (Jan-Mar) seasons. However, estimation of Wood Thrush territory latitude did not differ significantly when using breeding or tropical dry season sun elevation. Average error in assignment to tropical sites was 365 ± 97 km (0.2-4.4°) in latitude. To obtain the best latitude estimates in the tropics with geolocators, we recommend using locations during the dry season where sun elevations are closer to those measured at breeding sites. We emphasize the importance of longitude in assigning forest birds to unknown sites; longitude estimates for Wood Thrushes in the tropics were, on average, within 66 ± 13 km (0-0.6°) of actual longitude. Latitude estimates were more accurate (180 ± 48 km) when assigning birds to breeding sites using deployments of geolocators in the tropics. Studies of species that are territorial in winter could collect more accurate migratory connectivity data by deploying geolocators at tropical wintering sites.

Keywords: Migration; Geo-loggers; Tracking; Sun elevation; Central America

  • Cochran W.W., Wikelski M., Individual migratory tactics of New World Catharus thrushes, In: Greenberg R. and Marra P.P. (Eds.), Birds of Two Worlds, The Johns Hopkins University Press, Baltimore, MA, 2005

  • Rimmer C.C., McFarland K.P., Known breeding and wintering sites of a Bicknell’s Thrush, Wilson Bull., 2001, 113, 234- 236.

  • Stutchbury B.J.M., Tarof S.A., Done T., Gow E., Kramer P.M., Tautin J., et al., Tracking long-distance songbird migration by using geolocators, Science, 2009, 323, 896, doi:10.1126/ science.1166664. [Web of Science] [CrossRef]

  • Bächler E., Hahn S., Schaub M., Arlettaz R., Jenni L., Fox J.W., et al., Year-round tracking of small trans-saharan migrants using light-level geolocators, PLOS ONE, 2010, 5, 4, doi:e9566 10.1371/journal.pone.0009566. [Web of Science]

  • Heckscher C.M., Taylor S.M., Fox J.W., Afanasyev V., Veery (Catharus fucescens) wintering locations, migratory connectivity, and a revision of its winter range using geolocator technology, Auk, 2011, 128, 531-542, doi:10.1525/ auk.2011.10280. [Web of Science] [CrossRef]

  • Ryder T.B., Fox J.W., Marra P.P., Estimating migratory connectivity of Gray Catbirds (Dumetella carolinensis) using geolocator and mark-recapture data Auk, 2011, 128, 448- 453, doi:10.1525/auk.2011.11091. [CrossRef] [Web of Science]

  • Schmaljohann H., Buchmann M., Fox J.W., Bairlein F., Tracking migration routes and the annual cycle of a trans- Sahara songbird migrant, Behav. Ecol. Sociobiol., 2012, 66, 915-922, doi:10.1007/s00265-012-1340-5. [Web of Science] [CrossRef]

  • Seavy N.E., Humple D.L., Cormier R.L., Gardali T., Establishing the breeding provenance of a temperatewintering North American passerine, the Golden-Crowned Sparrow, using light-level geolocation, PLOS ONE, 2012, 7, doi:e34886 10.1371/journal.pone.0034886. [Web of Science]

  • Stach R., Jakobsson S., Kullberg C., Fransson T., Geolocators reveal three consecutive wintering areas in the thrush nightingale, Animal Migration, 2012, 1, 1-7, doi:10.2478/ami-2012-0001. [CrossRef]

  • Beason J.P., Gunn C., Potter K.M., Sparks R.A., Fox J.W., The northern Black Swift: Migration path and wintering area revealed Wilson J. Ornithol., 2012, 124, 1-8, doi:http:// dx.doi.org/10.1676/11-146.1.

  • Åkesson S., Klaassen R., Holmgren J., Fox J.W., Hedenström A., Migration routes and strategies in a highly aerial migrant, the Common Swift Apus apus, revealed by light-level geolocators, PLOS ONE, 2012, 7, e41195, doi:e41195 10.1371/journal.pone.0041195.

  • Bairlein F., Norris D.R., Nagel R., Bulte M., Voight C.C., Fox J.W., et al., Cross-hemisphere migration of a 25g songbird, Biol. Lett., 2012, 2012, 505-507, doi:10.1098/rsbl.2011.1223. [CrossRef] [Web of Science]

  • Delmore K.E., Fox J.W., Irwin D.E., Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators, Proc. R. Soc. B-Biol. Sci., 2012, Published Online 26 Sept, doi:10.1098/ rspb.2012.1229. [Web of Science] [CrossRef]

  • Fraser K.C., Stutchbury B.J.M., Silverio C., Kramer P.M., Barrow J., Newstead D., et al., Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore, Proc. R. Soc. B-Biol. Sci., 2013, 279, 4901-4906. [Web of Science]

  • Stutchbury B.J.M., Gow E.A., Done T., MacPherson M., Fox J.W., Afanasyev V., Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics, Proc. R. Soc. B-Biol. Sci., 2011, 278, 131-137, doi:10.1098/rspb.2010.1220. [CrossRef] [Web of Science]

  • Martin T.G., Chades I., Arcese P., Marra P.P., Possingham H.P., Norris D.R., Optimal conservation of migratory species, PLOS ONE, 2007, 2, e751, doi:e751 10.1371/journal. pone.0000751.

  • Sheehy J., Taylor C.M., McCann K.S., Norris D.R., Optimal conservation planning for migratory animals: integrating demographic information across seasons, Conserv Lett, 2010, 3, 192-202, doi:Doi 10.1111/J.1755- 263x.2010.00100.X. [CrossRef]

  • Marra P.P., Hunter D., Perrault A.M., Migratory connectivity and the conservation of migratory animals, Environmental Law. Lewis and Clark., 2011, 41, 317-354.

  • Fudickar A.M., Wikelski M., Partecke J., Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats, Methods in Ecology and Evolution, 2012, 3, 47-52, doi:10.1111/J.2041-210x.2011.00136.X. [Web of Science] [CrossRef]

  • Lisovski S., Hewson C.M., Klaassen R.H.G., Korner- Nievergelt F., Kristensen M.W., Hahn S., Geolocation by light: accuracy and precision affected by environmental factors, Methods in Ecology and Evolution, 2012, 3, 603-612, doi:10.1111/j.2041-210X.2012.00185.x. [CrossRef] [Web of Science]

  • Harris M.P., Daunt F., Newell M., Phillips R.A., Wanless S., Wintering areas of adult Atlantic puffins Fratercula arctica from a North Sea colony as revealed by geolocation technology, Mar Biol, 2010, 157, 827-836, doi:10.1007/s00227-009- 1365-0. [CrossRef] [Web of Science]

  • Nisbet I.C.T., Mostello C.S., Veit R.R., Fox J.W., Afanasyev V., Migrations and winter quarters of five Common Terns tracked using geolocators, Waterbirds, 2011, 34, 32-39. [Web of Science]

  • Rodriguez A., Negro J.J., Bustamante J., Fox J.W., Afanasyev V., Geolocators map the wintering grounds of threatened Lesser Kestrels in Africa, Divers Distrib, 2009, 15, 1010-1016. [Web of Science]

  • Tøttrup A.P., Klaassen R.H.G., Strandberg R., Thorup K., Kristensen M.W., Jørgensen P.S., et al., The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration, Proc. R. Soc. B-Biol. Sci., 2012, 279, 1008-1016, doi:Doi 10.1098/Rspb.2011.1323. [Web of Science] [CrossRef]

  • Faaborg J., Holmes R.T., Anders A.D., Bildstein K.L., Dugger K.M., Gauthreaux S.A., et al., Conserving migratory land birds in the New World: Do we know enough?, Ecological Applications, 2010, 20, 398-418. [Web of Science]

  • Vega Rivera J.H., McShea W.J., Rappole J.H., Haas C.A., Pattern and chronology of prebasic molt for the Wood Thrush and its relation to reproduction and migration departure, Wilson Bull., 1998, 110, 384-392.

  • Chandler C.C., King D.I., Chandler R.B., Do mature forest birds prefer early-successional habitat during the postfledging period?, Forest Ecol Manag, 2012, 264, 1-9, doi:10.1016/j.foreco.2011.09.018. [CrossRef] [Web of Science]

  • Lisovski S., Bauer S., Emmenegger T., Analysis of light based geolocator data, 1.02, 2012, CRAN, cran.r-project.org/web/packages/GeoLight/GeoLight.pdf

Supplementary Article Materials

Comments (0)

Please log in or register to comment.