Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 9, 2017

On Utmost Multiplicity of Hierarchical Stellar Systems

  • Y. M. Gebrehiwot EMAIL logo , D. A. Kovaleva , A. Yu. Kniazev , O. Yu. Malkov , N. A. Skvortsov , A. V. Karchevsky , S. B. Tessema and A. O. Zhukov
From the journal Open Astronomy

Abstract

According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component) systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components) in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc.), some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

REFERENCES

Dommanget J., Nys O. 2002, The Catalogue of Components of Double and Multiple Stars, VizieR On-line Data Catalog: I/274Search in Google Scholar

Duchêne G., Kraus A. 2013, ARA&A, 51, 26910.1146/annurev-astro-081710-102602Search in Google Scholar

Fabricius C., Høg E., Makarov V. V. et al. 2002, A&A, 384, 18010.1051/0004-6361:20011822Search in Google Scholar

Isaeva A. A., Kovaleva D. A., Malkov O. Yu. 2015, Baltic Astronomy, 24, 15710.1515/astro-2017-0215Search in Google Scholar

Jiang Y.-F., Tremaine S. 2010, MNRAS, 401, 97710.1111/j.1365-2966.2009.15744.xSearch in Google Scholar

Kaygorodov P., Debray B., Kolesnikov N. et al. 2012, Baltic Astronomy, 21, 30910.1515/astro-2017-0389Search in Google Scholar

Kovaleva D. A., Malkov O. Yu., Yungelson L. R. et al. 2015a, Baltic Astronomy, 24, 36710.1515/astro-2017-0238Search in Google Scholar

Kovaleva D. A., Kaygorodov P. V., Malkov O. Yu. et al. 2015b, Astronomy & Computing, 11, 11910.1016/j.ascom.2015.02.007Search in Google Scholar

Mason B. D., Wycoff G. L., Hartkopf W. I. et al. 2016, The Washington Visual Double Star Catalog, VizieR On-line Data Catalog: B/wdsSearch in Google Scholar

Orlov V. V., Titov O. A. 1994, Astronomy Reports, 38, 462Search in Google Scholar

Poveda A., Allen C., Parrao L. 1982, ApJ, 258, 58910.1086/160110Search in Google Scholar

Surdin V. G. 2001, ASP Conf. Ser., 228, 568Search in Google Scholar

Tokovinin A. A. 1997, A&AS, 124, 7510.1051/aas:1997181Search in Google Scholar

Tokovinin A. A. 2001, in The Formation of Binary Stars (Proc. IAU Symp. 200),10.1017/S0074180900225096Search in Google Scholar

eds. H. Zinnecker & R. D. Mathieu, ASP, San Francisco, USA, 84Search in Google Scholar

Tokovinin A. A. 2004, Rev. Mex. Astron. Astrof. Conf. Ser., 21, 7Search in Google Scholar

Tokovinin A. A. 2014, AJ, 147, 8710.1088/0004-6256/147/4/87Search in Google Scholar

Received: 2016-11-22
Accepted: 2016-12-14
Published Online: 2017-3-9
Published in Print: 2016-12-1

© 2016 Y. M. Gebrehiwot et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/astro-2017-0258/html
Scroll to top button