Jump to ContentJump to Main Navigation

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year



Biochemical Characterization of the Catalytic Domain of Membrane-Type 4 Matrix Metalloproteinase

Hansjörg Kolkenbrock / Lutz Essers / Norbert Ulbrich / Horst Will

Citation Information: Biological Chemistry. Volume 380, Issue 9, Pages 1103–1108, ISSN (Print) 1431-6730, DOI: 10.1515/BC.1999.137, June 2005

Publication History

Published Online:


A C-terminal truncated form of membrane-type 4 matrix metalloproteinase (MT4-MMP; MMP 17), lacking the hemopexin-like and transmembrane domain, was expressed in Escherichia coli. The catalytic domain was produced by tryptic activation of the recombinant proenzyme and proved to be catalytically active towards the fluorogenic substrate for matrix metalloproteinases (7-methoxycoumarin-4-yl) acetyl-Pro- Leu-Gly-Leu(3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl)- Ala-Arg-NH2.

In contrast to the other three MT-MMPs (MT1-, MT2-, and MT3-MMP), the catalytic domain of MT4-MMP does not activate progelatinase A, nor does it hydrolyze one of the offered extracellular matrix (ECM) proteins, such as collagen types I, II, III, IV, and V, gelatin, fibronectin, laminin or decorin. TIMP-1, a poor inhibitor of MT1-, MT2- and MT3-MMP, suppresses MT4-MMP activity effectively. The progelatinase A/TIMP-2 complex that usually reacts like TIMP-2 also inhibits MT4-MMP. TIMP-2, a strong inhibitor of other MT-MMPS, inhibits MT4-MMP at low concentrations. With increasing TIMP-2 concentration, however, activity passes through a minimum and then increases until at high TIMP-2 concentration the activity is the same as in the absence of TIMP-2. TIMP-1 or the progelatinase A/TIMP-2 complex do not prevent reactivation of MT4-MMP catalytic domain at high TIMP-2 concentrations.

Comments (0)

Please log in or register to comment.