Jump to ContentJump to Main Navigation

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

VolumeIssuePage

Issues

Polyphenols of Cocoa: Inhibition of Mammalian 15-Lipoxygenase

Tankred Schewe / Christian Sadik / Lars-Oliver Klotz / Tanihiro Yoshimoto / Hartmut Kühn / Helmut Sies

Citation Information: Biological Chemistry. Volume 382, Issue 12, Pages 1687–1696, ISSN (Print) 1431-6730, DOI: 10.1515/BC.2001.204, June 2005

Publication History

Published Online:
2005-06-01

Abstract

Some cocoas and chocolates are rich in ()epicatechin and its related oligomers, the procyanidins. Fractions of these compounds, isolated from the seeds of Theobroma cacao, caused dosedependent inhibition of isolated rabbit 15-lipoxygenase-1 with the larger oligomers being more active; the decamer fraction revealed an IC 50 of 0.8 M. Among the monomeric flavanols, epigallocatechin gallate (IC 50 = 4 M) and epicatechin gallate (5 M) were more potent than ()epicatechin (IC50 = 60 M). ()Epicatechin and procyanidin nonamer also inhibited the formation of 15-hydroxyeicosatetraenoic acid from arachidonic acid in rabbit smooth muscle cells transfected with human 15-lipoxygenase-1. In contrast, inhibition of the lipoxygenase pathway in J774A.1 cells transfected with porcine leukocytetype 12- lipoxygenase (another representative of the 12/15- lipoxygenase family) was only observed upon sonication of the cells, suggesting a membrane barrier for flavanols in these cells. Moreover, epicatechin (IC50 approx. 15 M) and the procyanidin decamer inhibited recombinant human platelet 12-lipoxygenase. These observations suggest general lipoxygenase inhibitory potency of flavanols and procyanidins that may contribute to their putative beneficial effects on the cardiovascular system in man. Thus, they may provide a plausible explanation for recent literature reports indicating that procyanidins decrease the leukotriene/prostacyclin ratio in humans and human aortic endothelial cells.

Comments (0)

Please log in or register to comment.
Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.