Jump to ContentJump to Main Navigation

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR increased in 2014: 3.268
Rank 106 out of 289 in category Biochemistry & Molecular Biology in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.596
Source Normalized Impact per Paper (SNIP) 2014: 0.845
Impact per Publication (IPP) 2014: 2.992



Glycoproteins from Insect Cells: Sialylated or Not?

Ingrid Marchal / Donald L. Jarvis / René Cacan / André Verbert

Citation Information: Biological Chemistry. Volume 382, Issue 2, Pages 151–159, ISSN (Print) 1431-6730, DOI: 10.1515/BC.2001.023, June 2005

Publication History

Published Online:


Our growing comprehension of the biological roles of glycan moieties has created a clear need for expression systems that can produce mammaliantype glycoproteins. In turn, this has intensified interest in understanding the protein glycosylation pathways of the heterologous hosts that are commonly used for recombinant glycoprotein expression. Among these, insect cells are the most widely used and, particularly in their role as hosts for baculovirus expression vectors, provide a powerful tool for biotechnology. Various studies of the glycosylation patterns of endogenous and recombinant glycoproteins produced by insect cells have revealed a large variety of O and Nlinked glycan structures and have established that the major processed O and Nglycan species found on these glycoproteins are (Galß1,3)GalNAcOSer/Thr and Man3(Fuc)GlcNAc2-NAsn, respectively. However, the ability or inability of insect cells to synthesize and compartmentalize sialic acids and to produce sialylated glycans remains controversial. This is an important issue because terminal sialic acid residues play diverse biological roles in many glycoconjugates. While most work indicates that insect cellderived glycoproteins are not sialylated, some wellcontrolled studies suggest that sialylation can occur. In evaluating this work, it is important to recognize that oligosaccharide structural determination is tedious work, due to the infinite diversity of this class of compounds. Furthermore, there is no universal method of glycan analysis; rather, various strategies and techniques can be used, which provide glycobiologists with relatively more or less precise and reliable results. Therefore, it is important to consider the methodology used to assess glycan structures when evaluating these studies. The purpose of this review is to survey the studies that have contributed to our current view of glycoprotein sialylation in insect cell systems, according to the methods used. Possible reasons for the disagreement on this topic in the literature, which include the diverse origins of biological material and experimental artifacts, will be discussed. In the final analysis, it appears that if insect cells have the genetic potential to perform sialylation of glycoproteins, this is a highly specialized function that probably occurs rarely. Thus, the production of sialylated recombinant glycoproteins in the baculovirusinsect cell system will require metabolic engineering efforts to extend the native protein glycosylation pathways of insect cells.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hideaki Mabashi-Asazuma, Chu-Wei Kuo, Kay-Hooi Khoo, and Donald L. Jarvis
ACS Chemical Biology, 2015, Page 150804145121000
Daisuke Morokuma, Jian Xu, Hiroaki Mon, Kazuma Hirata, Masato Hino, Shoko Kuboe, Mami Yamashita, Takahiro Kusakabe, and Jae Man Lee
Journal of Asia-Pacific Entomology, 2015, Volume 18, Number 2, Page 303
Yali Qin, Marisa Banasik, SoonJeung Kim, Adam Penn-Nicholson, Habtom H Habte, Celia LaBranche, David C Montefiori, Chong Wang, and Michael W Cho
Virology, 2014, Volume 462-463, Page 363
Valerie M. Vaughn, Cale C. Streeter, David J. Miller, and Sonja R. Gerrard
Viruses, 2010, Volume 2, Number 2, Page 655
Jan Sterba, Marie Vancova, Jarmila Sterbova, Lesley Bell-Sakyi, and Libor Grubhoffer
Carbohydrate Research, 2014, Volume 389, Page 93
H. Mabashi-Asazuma, C.-W. Kuo, K.-H. Khoo, and D. L. Jarvis
Glycobiology, 2014, Volume 24, Number 3, Page 325
Morten Thaysen-Andersen, Martin R. Larsen, Nicolle H. Packer, and Giuseppe Palmisano
RSC Advances, 2013, Volume 3, Number 45, Page 22683
Takashi Angata and Ajit Varki
Chemical Reviews, 2002, Volume 102, Number 2, Page 439
David L. Hacker, Divor Kiseljak, Yashas Rajendra, Sarah Thurnheer, Lucia Baldi, and Florian M. Wurm
Protein Expression and Purification, 2013, Volume 92, Number 1, Page 67
Ana Rita Costa, Maria Elisa Rodrigues, Mariana Henriques, Rosário Oliveira, and Joana Azeredo
Critical Reviews in Biotechnology, 2014, Volume 34, Number 4, Page 281
S. Gaunitz, C. Jin, A. Nilsson, J. Liu, N. G. Karlsson, and J. Holgersson
Glycobiology, 2013, Volume 23, Number 7, Page 778
Fernando F. Martinez, Laura Cervi, Carolina P. Knubel, Graciela M. Panzetta-Dutari, and Claudia C. Motran
American Journal of Reproductive Immunology, 2013, Volume 69, Number 4, Page 383
Jia-biao Hu, Peng Zhang, Mei-xian Wang, Fang Zhou, Yan-shan Niu, and Yun-gen Miao
Molecular Biology Reports, 2012, Volume 39, Number 8, Page 8405
Peter J.K Knight, Tom A Pfeifer, and Tom A Grigliatti
Analytical Biochemistry, 2003, Volume 320, Number 1, Page 88
Liu Chen, Yan-hua Xia, Zi-shu Pan, and Chu-yu Zhang
Protein Expression and Purification, 2007, Volume 55, Number 2, Page 379
Mark A Miller, Christy L Lavine, Sheri D Klas, Lawrence M Pfeffer, and Michael A Whitt
Protein Expression and Purification, 2004, Volume 33, Number 1, Page 92
Eric Khaznadji, Chantal Boulard, and Nathalie Moiré
Experimental Parasitology, 2003, Volume 104, Number 1-2, Page 33
Saulius Butenas, Jolanta Krudysz-Amblo, and Kenneth G. Mann
Thrombosis Research, 2010, Volume 125, Page S26
Oliberto Sánchez, Maritza Barrera, María P. Rodríguez, María T. Frías, Nancy E. Figueroa, Paula Naranjo, Raquel Montesino, Omar Farnos, Sara Castell, Alina Venereo, Llilianne Ganges, Carlos Borroto, and Jorge R. Toledo
Vaccine, 2008, Volume 26, Number 7, Page 988
H. Kurihara, H. Sezutsu, T. Tamura, and K. Yamada
Biochemical and Biophysical Research Communications, 2007, Volume 355, Number 4, Page 976
Hyung Gu Kim, Sung Mo Yang, Young Choon Lee, Su Il Do, In Sik Chung, and Jai Myung Yang
Biochemical and Biophysical Research Communications, 2003, Volume 305, Number 3, Page 488
Jolanta Krudysz-Amblo, Mark E. Jennings, Dwight E. Matthews, Kenneth G. Mann, and Saulius Butenas
Biochimica et Biophysica Acta (BBA) - General Subjects, 2011, Volume 1810, Number 4, Page 398
Maria Teresa C.P. Ribela, Peter W. Gout, and Paolo Bartolini
Journal of Chromatography B, 2003, Volume 790, Number 1-2, Page 285
Yasuyuki Arakane, Qingsong Zhu, Masahiro Matsumiya, Subbaratnam Muthukrishnan, and Karl J Kramer
Insect Biochemistry and Molecular Biology, 2003, Volume 33, Number 6, Page 631
Ludwig Deml, Cornelia Speth, Manfred P. Dierich, Hans Wolf, and Ralf Wagner
Molecular Immunology, 2005, Volume 42, Number 2, Page 259
Sabine Bürgmayr, Heidi Grabher-Meier, and Erika Staudacher
FEBS Letters, 2001, Volume 508, Number 1, Page 95
Dana C Andersen and Lynne Krummen
Current Opinion in Biotechnology, 2002, Volume 13, Number 2, Page 117
Mukesh Kumar, Brian P. Bradow, and Joshua Zimmerberg
Human Gene Therapy, 2003, Volume 14, Number 1, Page 67
K. Hacker, L. White, and A. M. de Silva
Journal of General Virology, 2009, Volume 90, Number 9, Page 2097
Kate Koles, Elena Repnikova, Galina Pavlova, Leonid I. Korochkin, and Vladislav M. Panin
Glycoconjugate Journal, 2009, Volume 26, Number 3, Page 313
Richard M Twyman, Stefan Schillberg, and Rainer Fischer
Expert Opinion on Emerging Drugs, 2005, Volume 10, Number 1, Page 185
M.J.E. Havenga, L. Holterman, I. Melis, S. Smits, J. Kaspers, E. Heemskerk, R. van der Vlugt, M. Koldijk, G.J. Schouten, G. Hateboer, K. Brouwer, R. Vogels, and J. Goudsmit
Biotechnology and Bioengineering, 2008, Volume 100, Number 2, Page 273
Daniel Johnson and Eric S. Bennett
Pflügers Archiv - European Journal of Physiology, 2008, Volume 456, Number 2, Page 393
Nabil Killiny, Michel Castroviejo, and Colette Saillard
Phytopathology, 2005, Volume 95, Number 5, Page 541
Daniel R. Hill, Jared J. Aumiller, Xianzong Shi, and Donald L. Jarvis
Biotechnology and Bioengineering, 2006, Volume 95, Number 1, Page 37
Brian D Marsden, Michael Sundstrom, and Stefan Knapp
Expert Opinion on Drug Discovery, 2006, Volume 1, Number 2, Page 123
E. Karnaukhova, Y. Ophir, and B. Golding
Amino Acids, 2006, Volume 30, Number 4, Page 317
F. Vaziri-Sani, J. Hellwage, P. F. Zipfel, A. G. Sjoholm, R. Iancu, and D. Karpman
Journal of Thrombosis and Haemostasis, 2005, Volume 3, Number 1, Page 154
Eun-Young Yun, Tae-Won Goo, Sung-Wan Kim, Kwang-Ho Choi, Jae-Sam Hwang, Seok-Woo Kang, and O-Yu Kwon
Biotechnology Letters, 2005, Volume 27, Number 14, Page 1041
The Journal of Eukaryotic Microbiology, 2003, Volume 50, Number 4, Page 235
Thomas A Kost, J Patrick Condreay, and Donald L Jarvis
Nature Biotechnology, 2005, Volume 23, Number 5, Page 567
Masayuki SHIMOJIMA, Yorihiro NISHIMURA, Takayuki MIYAZAWA, Kentaro KATO, Yukinobu TOHYA, and Hiroomi AKASHI
Journal of Veterinary Medical Science, 2003, Volume 65, Number 7, Page 769
Francisco J. Alarcon-Chaidez, Uwe U. Muller-Doblies, and Stephen Wikel
Parasite Immunology, 2003, Volume 25, Number 2, Page 69
Nicholas J. Gibson, John G. Hildebrand, and Leslie P. Tolbert
The Journal of Comparative Neurology, 2004, Volume 476, Number 1, Page 1
Kevin Breitbach and Donald L. Jarvis
Biotechnology and Bioengineering, 2001, Volume 74, Number 3, Page 230

Comments (0)

Please log in or register to comment.