Jump to ContentJump to Main Navigation

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR increased in 2014: 3.268
Rank 106 out of 289 in category Biochemistry & Molecular Biology in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.596
Source Normalized Impact per Paper (SNIP) 2014: 0.845
Impact per Publication (IPP) 2014: 2.992

VolumeIssuePage

Issues

Structural Intermediates in the Putative Pathway from the Cellular Prion Protein to the Pathogenic Form

Katja Jansen / Oliver Schäfer / Eva Birkmann / Karin Post / Hana Serban / Stanley B. Prusiner / Detlev Riesner

Citation Information: Biological Chemistry. Volume 382, Issue 4, Pages 683–691, ISSN (Print) 1431-6730, DOI: 10.1515/BC.2001.081, June 2005

Publication History

Published Online:
2005-06-01

Abstract

The conversion of the αhelical, protease sensitive and noninfectious form of the prion protein (PrP) into an insoluble, protease resistant, predominantly βsheeted and infectious form (PrP) is the fundamental event in prion formation. In the present work, two soluble and stable intermediate structural states are newly identified for recombinant Syrian hamster PrP(90 231) (recPrP), a dimeric αhelical state and a tetra or oligomeric, βsheet rich state. In 0.2% SDS at room temperature, recPrP is soluble and exhibits αhelical and random coil secondary structure as determined by circular dichroism. Reduction of the SDS concentration to 0.06% leads first to a small increase in αhelical content, whereas further dilution to 0.02% results in the aquisition of βsheet structure. The reversible transition curve is sigmoidal within a narrow range of SDS concentrations (0.04 to 0.02%). Size exclusion chromatography and chemical crosslinking revealed that the αhelical form is dimeric, while the βsheet rich form is tetra or oligomeric. Both the αhelical and βsheet rich intermediates are soluble and stable. Thus, they should be accessible to further structural and mechanistic studies. At 0.01% SDS, the oligomeric intermediates aggregated into large, insoluble structures as observed by fluorescence correlation spectroscopy. Our results are discussed with respect to the mechanism of PrP formation and the propagation of prions.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pascal Baillod, Julian Garrec, Maria-Carola Colombo, Ivano Tavernelli, and Ursula Rothlisberger
Biochemistry, 2012, Volume 51, Number 49, Page 9891
[2]
Zhen Yuan, Lifeng Yang, Baian Chen, Ting Zhu, Mohammad Farooque Hassan, Xiaomin Yin, Xiangmei Zhou, and Deming Zhao
Journal of Neurochemistry, 2015, Volume 133, Number 5, Page 722
[3]
Roberto Chiesa and David A. Harris
Neurobiology of Disease, 2001, Volume 8, Number 5, Page 743
[4]
Henrik Müller, Oleksandr Brener, Olivier Andreoletti, Timo Piechatzek, Dieter Willbold, Giuseppe Legname, and Henrike Heise
Prion, 2014, Volume 8, Number 5, Page 344
[5]
Eva Birkmann and Detlev Riesner
Prion, 2008, Volume 2, Number 2, Page 67
[6]
Maxime Lefebvre-Roque, Elisabeth Kremmer, Sabine Gilch, Wen-Quan Zou, Cécile Féraudet, Chantal Mourton-Gilles, Nicole Salès, Jacques Grassi, Pierluigi Gambetti, Thierry G.M. Baron, Hermann M. Schätzl, and Corinne Ida Lasmézas
Prion, 2007, Volume 1, Number 3, Page 198
[7]
Xavier Roucou
Frontiers in Cell and Developmental Biology, 2014, Volume 2
[8]
J. Stohr, C. Condello, J. C. Watts, L. Bloch, A. Oehler, M. Nick, S. J. DeArmond, K. Giles, W. F. DeGrado, and S. B. Prusiner
Proceedings of the National Academy of Sciences, 2014, Volume 111, Number 28, Page 10329
[9]
Pascal Baillod, Julian Garrec, Ivano Tavernelli, and Ursula Rothlisberger
Biochemistry, 2013, Volume 52, Number 47, Page 8518
[11]
Jogender Singh and Jayant B. Udgaonkar
Journal of Molecular Biology, 2013, Volume 425, Number 18, Page 3510
[12]
Zhe Li, B. Michael Silber, Satish Rao, Joel R. Gever, Clifford Bryant, Alejandra Gallardo-Godoy, Elena Dolghih, Kartika Widjaja, Manuel Elepano, Matthew P. Jacobson, Stanley B. Prusiner, and Adam R. Renslo
ChemMedChem, 2013, Volume 8, Number 5, Page 847
[13]
Corinne Lasmézas and Minghai Zhou
Expert Review of Proteomics, 2012, Volume 9, Number 3, Page 233
[14]
Stephan Schwarzinger, Anselm H. C. Horn, Jan Ziegler, and Heinrich Sticht
Journal of Biomolecular Structure and Dynamics, 2006, Volume 23, Number 6, Page 581
[15]
Jan Ziegler, Christine Viehrig, Stefan Geimer, Paul Rösch, and Stephan Schwarzinger
FEBS Letters, 2006, Volume 580, Number 8, Page 2033
[16]
Cathryn L. Haigh, Josephine A. Wright, and David R. Brown
Journal of Molecular Biology, 2007, Volume 368, Number 4, Page 915
[17]
M. Zhou, G. Ottenberg, G. F. Sferrazza, and C. I. Lasmezas
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 8, Page 3113
[18]
K. Elfrink, J. Ollesch, J. Stohr, D. Willbold, D. Riesner, and K. Gerwert
Proceedings of the National Academy of Sciences, 2008, Volume 105, Number 31, Page 10815
[19]
Giannantonio Panza, Jan Stöhr, Christian Dumpitak, Dimitrios Papathanassiou, Jürgen Weiß, Detlev Riesner, Dieter Willbold, and Eva Birkmann
Biochemical and Biophysical Research Communications, 2008, Volume 373, Number 4, Page 493
[20]
T. Kaimann, S. Metzger, K. Kuhlmann, B. Brandt, E. Birkmann, H.-D. Höltje, and D. Riesner
Journal of Molecular Biology, 2008, Volume 376, Number 2, Page 582
[21]
Armin Giese, Johannes Levin, Uwe Bertsch, and Hans Kretzschmar
Biochemical and Biophysical Research Communications, 2004, Volume 320, Number 4, Page 1240
[22]
Michel Bounias and Mark Purdey
Science of The Total Environment, 2002, Volume 297, Number 1-3, Page 1
[23]
Jan Stöhr, Kerstin Elfrink, Nicole Weinmann, Holger Wille, Dieter Willbold, Eva Birkmann, and Detlev Riesner
Biological Chemistry, 2011, Volume 392, Number 5
[24]
Christoph Hundt and Stefan Weiss
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2004, Volume 1689, Number 1, Page 1
[25]
Francesca Re, Silvia Sesana, Alberto Barbiroli, Francesco Bonomi, Emanuela Cazzaniga, Elena Lonati, Alessandra Bulbarelli, and Massimo Masserini
FEBS Letters, 2008, Volume 582, Number 2, Page 215
[26]
Giannantonio Panza, Jan Stöhr, Eva Birkmann, Detlev Riesner, Dieter Willbold, Otto Baba, Tatsuo Terashima, and Christian Dumpitak
Rejuvenation Research, 2008, Volume 11, Number 2, Page 365
[27]
Niklas Piening, Petra Weber, Tobias Högen, Michael Beekes, Hans Kretzschmar, and Armin Giese
Amyloid, 2006, Volume 13, Number 2, Page 67
[28]
Iva Hafner-Bratkovič, Jernej Gašperšič, Lojze M. Šmid, Mara Bresjanac, and Roman Jerala
Journal of Neurochemistry, 2008, Volume 104, Number 6, Page 1553
[29]
Karl-Werner Leffers, Holger Wille, Jan Stöhr, Erika Junger, Stanley B. Prusiner, and Detlev Riesner
Biological Chemistry, 2005, Volume 386, Number 6
[30]
Yuval Shaked, Roni Engelstein, and Ruth Gabizon
Journal of Neurochemistry, 2002, Volume 82, Number 1, Page 1
[31]
Sylvie Noinville, Jean-François Chich, and Human Rezaei
Veterinary Research, 2008, Volume 39, Number 4, Page 48
[32]
J. Stohr, N. Weinmann, H. Wille, T. Kaimann, L. Nagel-Steger, E. Birkmann, G. Panza, S. B. Prusiner, M. Eigen, and D. Riesner
Proceedings of the National Academy of Sciences, 2008, Volume 105, Number 7, Page 2409

Comments (0)

Please log in or register to comment.