Jump to ContentJump to Main Navigation

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year



Inhibition of Mammalian Legumain by Michael Acceptors and AzaAsn-Halomethylketones

A. J. Niestroj / K. Feußner / U. Heiser / P. M. Dando / A. Barrett / B. Gerhartz / H.-U. Demuth

Citation Information: Biological Chemistry. Volume 383, Issue 7-8, Pages 1205–1214, ISSN (Print) 1431-6730, DOI: 10.1515/BC.2002.133, June 2005

Publication History

Published Online:


Legumain is a lysosomal cysteine peptidase specific for an asparagine residue in the P1-position. It has been classified as a member of clan CD peptidases due to predicted structural similarities to caspases and gingipains. So far, inhibition studies on legumain are limited by the use of endogenous inhibitors such as cystatin C. A series of Michael acceptor inhibitors based on the backbone CbzLAlaLAlaLAsn (Cbz= benzyloxycarbonyl) has been prepared and resulted in an irreversible inhibition of porcine legumain. Variation of the molecular size within the war head revealed the best inhibition for the compound containing the allyl ester (kobs/I=766 M 1s 1). To overcome cyclisation between the amide moiety of the Asn residue and the war head, several asparagine analogues have been synthesised. Integrated in halomethylketone inhibitors, azaasparagine is accepted by legumain in the P1-position. The most potent inhibitor of this series, CbzLAlaLAlaAzaAsnchloromethylketone, displays a kobs/I value of 139 000 M 1s 1. Other cysteine peptidases, such as papain and cathepsin B, are not inhibited by this compound at concentrations up to 100 M. The synthetic inhibitors described here represent useful tools for the investigation of the structural and physiological properties of this unique asparaginespecific peptidase.

Comments (0)

Please log in or register to comment.
Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.