Glutathione – Functions and Metabolism in the Malarial Parasite Plasmodium falciparum : Biological Chemistry Jump to ContentJump to Main Navigation
Show Summary Details

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred


SCImago Journal Rank (SJR) 2015: 1.607
Source Normalized Impact per Paper (SNIP) 2015: 0.751
Impact per Publication (IPP) 2015: 2.609

249,00 € / $374.00 / £187.00*

Online
ISSN
1437-4315
See all formats and pricing

 


 
 

Select Volume and Issue
Loading journal volume and issue information...

Glutathione – Functions and Metabolism in the Malarial Parasite Plasmodium falciparum

K. Becker / S. Rahlfs / C. Nickel / R. H. Schirmer

Citation Information: Biological Chemistry. Volume 384, Issue 4, Pages 551–566, ISSN (Print) 1431-6730, DOI: 10.1515/BC.2003.063, June 2005

Publication History

Published Online:
2005-06-01

Abstract

When present as a trophozoite in human erythrocytes, the malarial parasite Plasmodium falciparum exhibits an intense glutathione metabolism. Glutathione plays a role not only in antioxidative defense and in maintaining the reducing environment of the cytosol. Many of the known glutathione-dependent processes are directly related to the specific lifestyle of the parasite. Reduced glutathione (GSH) supports rapid cell growth by providing electrons for deoxyribonucleotide synthesis and it takes part in detoxifying heme, a product of hemoglobin digestion. Free radicals generated in the parasite can be scavenged in reaction sequences involving the thiyl radical GS as well as the thiolate GS. As a substrate of glutathione S-transferase, glutathione is conjugated to nondegradable compounds including antimalarial drugs. Furthermore, it is the coenzyme of the glyoxalase system which detoxifies methylglyoxal, a byproduct of the intense glycolysis taking place in the trophozoite. Proteins involved in GSH-dependent processes include glutathione reductase, glutaredoxins, glyoxalase I and II, glutathione S-transferases, and thioredoxins. These proteins, as well as the ATP-dependent enzymes of glutathione synthesis, are studied as factors in the pathophysiology of malaria but also as potential drug targets. Methylene blue, an inhibitor of the structurally known P. falciparum glutathione reductase, appears to be a promising antimalarial medication when given in combination with chloroquine.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nabil Nesreen and El Sayyad Mohsen
International Journal of Nutrition and Metabolism, 2015, Volume 7, Number 4, Page 52
[2]
Franziska Mohring, Esther Jortzik, and Katja Becker
Molecular and Biochemical Parasitology, 2015
[3]
Eva-Maria Patzewitz, J. Enrique Salcedo-Sora, Eleanor H. Wong, Sonal Sethia, Paul A. Stocks, Spencer C. Maughan, James A.H. Murray, Sanjeev Krishna, Patrick G. Bray, Stephen A. Ward, and Sylke Müller
Antioxidants & Redox Signaling, 2013, Volume 19, Number 7, Page 683
[4]
Devin Morris, Melissa Khurasany, Thien Nguyen, John Kim, Frederick Guilford, Rucha Mehta, Dennis Gray, Beatrice Saviola, and Vishwanath Venketaraman
Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, Volume 1830, Number 5, Page 3329
[5]
Esther Jortzik and Katja Becker
International Journal of Medical Microbiology, 2012, Volume 302, Number 4-5, Page 187
[6]
S. Vo Duy, S. Besteiro, L. Berry, C. Perigaud, F. Bressolle, H.J. Vial, and I. Lefebvre-Tournier
Analytica Chimica Acta, 2012, Volume 739, Page 47
[7]
Philippe Grellier, Audronė Marozienė, Henrikas Nivinskas, Jonas Šarlauskas, Alessandro Aliverti, and Narimantas Čėnas
Archives of Biochemistry and Biophysics, 2010, Volume 494, Number 1, Page 32
[8]
Esther Jortzik, Karin Fritz-Wolf, Nicole Sturm, Marieke Hipp, Stefan Rahlfs, and Katja Becker
Journal of Molecular Biology, 2010, Volume 402, Number 2, Page 445
[9]
R. Luise Krauth-Siegel and Alejandro E. Leroux
Antioxidants & Redox Signaling, 2012, Volume 17, Number 4, Page 583
[10]
Chinmay Pal and Uday Bandyopadhyay
Antioxidants & Redox Signaling, 2012, Volume 17, Number 4, Page 555
[11]
Esther Jortzik, Lihui Wang, and Katja Becker
Antioxidants & Redox Signaling, 2012, Volume 17, Number 4, Page 657
[12]
Eva-Maria Patzewitz, Eleanor H. Wong, and Sylke Müller
Molecular Microbiology, 2012, Volume 83, Number 2, Page 304
[13]
Ashwani Sharma, Arvind Sharma, Sameer Dixit, and Amit Sharma
Scientific Reports, 2011, Volume 1
[14]
EKA W. SURADJI, TOSHIMITSU HATABU, KENJI KOBAYASHI, CHIHO YAMAZAKI, RIZKY ABDULAH, MINATO NAKAZAWA, JUNKO NAKAJIMA-SHIMADA, and HIROSHI KOYAMA
Parasitology, 2011, Volume 138, Number 14, Page 1852
[15]
R. Chillemi, B. Zappacosta, J. Simporè, S. Persichilli, M. Musumeci, and S. Musumeci
Clinica Chimica Acta, 2004, Volume 348, Number 1-2, Page 113
[16]
Richard K. Haynes, Kwan-Wing Cheu, Ka-Yan Li, Maggie Mei-Ki Tang, Ho-Ning Wong, Min-Jiao Chen, Zu-Feng Guo, Zhi-Hong Guo, Paolo Coghi, and Diego Monti
ChemMedChem, 2011, Volume 6, Number 9, Page 1603
[17]
A.D. Andricopulo, M.B. Akoachere, R. Krogh, C. Nickel, M.J. McLeish, G.L. Kenyon, L.D. Arscott, C.H. Williams, E. Davioud-Charvet, and K. Becker
Bioorganic & Medicinal Chemistry Letters, 2006, Volume 16, Number 8, Page 2283
[18]
Katja Becker, Leann Tilley, Jonathan L. Vennerstrom, David Roberts, Stephen Rogerson, and Hagai Ginsburg
International Journal for Parasitology, 2004, Volume 34, Number 2, Page 163
[19]
Slavica Pavlovic-Djuranovic, Jürgen F.J. Kun, Joachim E. Schultz, and Eric Beitz
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006, Volume 1758, Number 8, Page 1012
[20]
Christine Nickel, Stefan Rahlfs, Marcel Deponte, Sasa Koncarevic, and Katja Becker
Antioxidants & Redox Signaling, 2006, Volume 8, Number 7-8, Page 1227
[21]
Krishna P. Bhabak, Bhaskar J. Bhuyan, and Govindasamy Mugesh
Dalton Transactions, 2011, Volume 40, Number 10, Page 2099
[22]
Richard K. Haynes, Wing-Chi Chan, Ho-Ning Wong, Ka-Yan Li, Wai-Keung Wu, Kit-Man Fan, Herman H. Y. Sung, Ian D. Williams, Davide Prosperi, Sergio Melato, Paolo Coghi, and Diego Monti
ChemMedChem, 2010, Volume 5, Number 8, Page 1282
[23]
Sylke Müller
Molecular Microbiology, 2004, Volume 53, Number 5, Page 1291
[24]
Ying Fu, Leann Tilley, Shannon Kenny, and Nectarios Klonis
Cytometry Part A, 2010, Volume 9999A, Page NA
[25]
Francis W. Muregi and Akira Ishih
Drug Development Research, 2009, Page n/a
[26]
R. Heiner Schirmer, Boubacar Coulibaly, August Stich, Michael Scheiwein, Heiko Merkle, Jana Eubel, Katja Becker, Heiko Becher, Olaf Müller, Thomas Zich, Wolfgang Schiek, and Bocar Kouyaté
Redox Report, 2003, Volume 8, Number 5, Page 272
[27]
Thomas D. Lockwood
Parasitology Research, 2006, Volume 100, Number 1, Page 175
[28]
Rongwei Teng, Pauline R. Junankar, William A. Bubb, Caroline Rae, Pascal Mercier, and Kiaran Kirk
NMR in Biomedicine, 2009, Volume 22, Number 3, Page 292
[29]
Christophe Morin, Tatiana Besset, Jean-Claude Moutet, Martine Fayolle, Margit Brückner, Danièle Limosin, Katja Becker, and Elisabeth Davioud-Charvet
Organic & Biomolecular Chemistry, 2008, Volume 6, Number 15, Page 2731
[30]
Nitendra K. Sahu, Sanjeev Sahu, and Dharm Veer Kohli
Chemical Biology & Drug Design, 2008, Volume 71, Number 4, Page 287
[31]
Sasa Koncarevic, Ralf Bogumil, and Katja Becker
PROTEOMICS, 2007, Volume 7, Number 5, Page 711
[32]
Rumana Ahmad and Arvind K. Srivastava
Parasitology Research, 2006, Volume 100, Number 3, Page 581
[33]
Damien Brosson, Lauriane Kuhn, Frédéric Delbac, Jérôme Garin, Christian P. Vivarès, and Catherine Texier
PROTEOMICS, 2006, Volume 6, Number 12, Page 3625
[34]
Mark Wainwright and Leonard Amaral
Tropical Medicine and International Health, 2005, Volume 10, Number 6, Page 501
[35]
R. Luise Krauth-Siegel, Holger Bauer, and R. Heiner Schirmer
Angewandte Chemie International Edition, 2005, Volume 44, Number 5, Page 690

Comments (0)

Please log in or register to comment.