Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 28, 2006

Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal

  • Ulrich Förstermann
From the journal Biological Chemistry

Abstract

Endothelial NO synthase (eNOS) is the predominant enzyme responsible for vascular NO synthesis. A functional eNOS transfers electrons from NADPH to its heme center, where L-arginine is oxidized to L-citrulline and NO. Common conditions predisposing to atherosclerosis, such as hypertension, hypercholesterolemia, diabetes mellitus and smoking, are associated with enhanced production of reactive oxygen species (ROS) and reduced amounts of bioactive NO in the vessel wall. NADPH oxidases represent major sources of ROS in cardiovascular pathophysiology. NADPH oxidase-derived superoxide avidly interacts with eNOS-derived NO to form peroxynitrite (ONOO), which oxidizes the essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4). As a consequence, oxygen reduction uncouples from NO synthesis, thereby rendering NOS to a superoxide-producing pro-atherosclerotic enzyme. Supplementation with BH4 corrects eNOS dysfunction in several animal models and in patients. Administration of high local doses of the antioxidant L-ascorbic acid (vitamin C) improves endothelial function, whereas large-scale clinical trials do not support a strong role for oral vitamin C and/or E in reducing cardiovascular disease. Statins, angiotensin-converting enzyme inhibitors and AT1 receptor blockers have the potential of reducing vascular oxidative stress. Finally, novel approaches are being tested to block pathways leading to oxidative stress (e.g. protein kinase C) or to upregulate antioxidant enzymes.

:

References

Abu-Soud, H.M. and Stuehr, D.J. (1993). Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc. Natl. Acad. Sci. USA90, 10769–10772.10.1073/pnas.90.22.10769Search in Google Scholar

Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem. J.357, 593–615.10.1042/bj3570593Search in Google Scholar

Alheid, U., Frölich, J.C., and Förstermann, U. (1987). Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb. Res.47, 561–571.10.1016/0049-3848(87)90361-6Search in Google Scholar

Arndt, H., Smith, C.W., and Granger, D.N. (1993). Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive rats. Hypertension21, 667–673.10.1161/01.HYP.21.5.667Search in Google Scholar

Bachetti, T., Comini, L., Francolini, G., Bastianon, D., Valetti, B., Cadei, M., Grigolato, P., Suzuki, H., Finazzi, D., Albertini, A., et al. (2004). Arginase pathway in human endothelial cells in pathophysiological conditions. J. Mol. Cell. Cardiol.37, 515–523.10.1016/j.yjmcc.2004.05.004Search in Google Scholar

Baek, K.J., Thiel, B.A., Lucas, S., and Stuehr, D.J. (1993). Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J. Biol. Chem.268, 21120–21129.Search in Google Scholar

Bec, N., Gorren, A.F.C., Mayer, B., Schmidt, P.P., Andersson, K.K., and Lange, R. (2000). The role of tetrahydrobiopterin in the activation of oxygen by nitric-oxide synthase. J. Inorg. Biochem.81, 207–211.10.1016/S0162-0134(00)00104-5Search in Google Scholar

Berkowitz, D.E., White, R., Li, D., Minhas, K.M., Cernetich, A., Kim, S., Burke, S., Shoukas, A.A., Nyhan, D., Champion, H.C., and Hare, J.M. (2003). Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation108, 2000–2006.10.1161/01.CIR.0000092948.04444.C7Search in Google Scholar PubMed

Bivalacqua, T.J., Hellstrom, W.J., Kadowitz, P.J., and Champion, H.C. (2001). Increased expression of arginase II in human diabetic corpus cavernosum in diabetic-associated erectile dysfunction. Biochem. Biophys. Res. Commun.283, 923–927.10.1006/bbrc.2001.4874Search in Google Scholar PubMed

Böger, R.H., Sydow, K., Borlak, J., Thum, T., Lenzen, H., Schubert, B., Tsikas, D., and Bode-Böger, S.M. (2000). LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ. Res.87, 99–105.10.1161/01.RES.87.2.99Search in Google Scholar PubMed

Brunner, K., Tortschanoff, A., Hemmens, B., Andrew, P.J., Mayer, B., and Kungl, A.J. (1998). Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization. Biochemistry37, 17545–17553.10.1021/bi981138lSearch in Google Scholar PubMed

Buga, G.M., Singh, R., Pervin, S., Rogers, N.E., Schmitz, D.A., Jenkinson, C.P., Cederbaum, S.D., and Ignarro, L.J. (1996). Arginase activity in endothelial cells: inhibition by NG-hydroxy-l-arginine during high-output NO production. Am. J. Physiol.271, H1988–1998.10.1152/ajpheart.1996.271.5.H1988Search in Google Scholar

Busse, R., Luckhoff, A., and Bassenge, E. (1987). Endothelium-derived relaxant factor inhibits platelet activation. Naunyn-Schmiedeberg's Arch. Pharmacol.336, 566–571.10.1007/BF00169315Search in Google Scholar

Butler, R., Morris, A.D., Belch, J.J., Hill, A., and Struthers, A.D. (2000). Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension35, 746–751.10.1161/01.HYP.35.3.746Search in Google Scholar

Cardillo, C., Kilcoyne, C.M., Cannon, R.O. III, Quyyumi, A.A., and Panza, J.A. (1997). Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension30, 57–63.10.1161/01.HYP.30.1.57Search in Google Scholar

Chen, P.F., Tsai, A.L., and Wu, K.K. (1994). Cysteine 184 of endothelial nitric oxide synthase is involved in heme coordination and catalytic activity. J. Biol. Chem.269, 25062–25066.10.1016/S0021-9258(17)31498-9Search in Google Scholar

Clarke, R. and Armitage, J. (2002). Antioxidant vitamins and risk of cardiovascular disease. Review of large-scale randomised trials. Cardiovasc. Drugs Ther.16, 411–415.10.1023/A:1022134418372Search in Google Scholar

Closs, E.I., Scheld, J.S., Sharafi, M., and Forstermann, U. (2000). Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol. Pharmacol.57, 68–74.Search in Google Scholar

Cosentino, F. and Katusic, Z.S. (1995). Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation91, 139–144.10.1161/01.CIR.91.1.139Search in Google Scholar

Cosentino, F. and Luscher, T.F. (1998). Tetrahydrobiopterin and endothelial function. Eur. Heart J.19 (Suppl.), G3–8.Search in Google Scholar

Crane, B.R., Arvai, A.S., Ghosh, D.K., Wu, C., Getzoff, E.D., Stuehr, D.J., and Tainer, J.A. (1998). Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science279, 2121–2126.10.1126/science.279.5359.2121Search in Google Scholar

Diet, F., Pratt, R.E., Berry, G.J., Momose, N., Gibbons, G.H., and Dzau, V.J. (1996). Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation94, 2756–2767.10.1161/01.CIR.94.11.2756Search in Google Scholar

Drexler, H., Zeiher, A.M., Meinzer, K., and Just, H. (1991). Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by l-arginine. Lancet338, 1546–1550.10.1016/0140-6736(91)92372-9Search in Google Scholar

Drummond, G.R., Cai, H., Davis, M.E., Ramasamy, S., and Harrison, D.G. (2000). Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ. Res.86, 347–354.10.1161/01.RES.86.3.347Search in Google Scholar

d'Uscio, L.V., Milstien, S., Richardson, D., Smith, L., and Katusic, Z.S. (2003). Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ. Res.92, 88–95.10.1161/01.RES.0000049166.33035.62Search in Google Scholar

Ellis, G.R., Anderson, R.A., Lang, D., Blackman, D.J., Morris, R.H., Morris-Thurgood, J., McDowell, I.F., Jackson, S.K., Lewis, M.J., and Frenneaux, M.P. (2000). Neutrophil superoxide anion – generating capacity, endothelial function and oxidative stress in chronic heart failure: effects of short- and long-term vitamin C therapy. J. Am. Coll. Cardiol.36, 1474–1482.10.1016/S0735-1097(00)00916-5Search in Google Scholar

Fleming, I. and Busse, R. (2003). Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am. J. Physiol. Regul. Integr. Comp. Physiol.284, R1–12.10.1152/ajpregu.00323.2002Search in Google Scholar PubMed

Förstermann, U., Mülsch, A., Böhme, E., and Busse, R. (1986). Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ. Res.58, 531–538.10.1161/01.RES.58.4.531Search in Google Scholar

Förstermann, U., Closs, E.I., Pollock, J.S., Nakane, M., Schwarz, P., Gath, I., and Kleinert, H. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension23, 1121–1131.Search in Google Scholar

Fukui, T., Ishizaka, N., Rajagopalan, S., Laursen, J.B., Capers, Q.T., Taylor, W.R., Harrison, D.G., de Leon, H., Wilcox, J.N., and Griendling, K.K. (1997). p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ. Res.80, 45–51.10.1161/01.RES.80.1.45Search in Google Scholar

Garg, U.C. and Hassid, A. (1989). Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. Clin. Invest.83, 1774–1777.10.1172/JCI114081Search in Google Scholar PubMed PubMed Central

Goekjian, P.G. and Jirousek, M.R. (2001). Protein kinase C inhibitors as novel anticancer drugs. Expert Opin. Investig. Drugs10, 2117–2140.Search in Google Scholar

Gokce, N., Keaney, J.F. Jr., Frei, B., Holbrook, M., Olesiak, M., Zachariah, B.J., Leeuwenburgh, C., Heinecke, J.W., and Vita, J.A. (1999). Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation99, 3234–3240.10.1161/01.CIR.99.25.3234Search in Google Scholar PubMed

Gorren, A.C., List, B.M., Schrammel, A., Pitters, E., Hemmens, B., Werner, E.R., Schmidt, K., and Mayer, B. (1996). Tetrahydrobiopterin-free neuronal nitric oxide synthase: evidence for two identical highly anticooperative pteridine binding sites. Biochemistry35, 16735–16745.10.1021/bi961931jSearch in Google Scholar PubMed

Gorren, A.C., Kungl, A.J., Schmidt, K., Werner, E.R., and Mayer, B. (2001). Electrochemistry of pterin cofactors and inhibitors of nitric oxide synthase. Nitric Oxide5, 176–186.10.1006/niox.2001.0332Search in Google Scholar PubMed

Griendling, K.K. (2004). Novel NAD(P)H oxidases in the cardiovascular system. Heart90, 491–493.10.1136/hrt.2003.029397Search in Google Scholar PubMed PubMed Central

Griendling, K.K., Sorescu D., and Ushio-Fukai, M. (2000). NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res.86, 494–501.10.1161/01.RES.86.5.494Search in Google Scholar

Guzik, T.J., Mussa, S., Gastaldi, D., Sadowski, J., Ratnatunga, C., Pillai, R., and Channon, K.M. (2002). Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation105, 1656–1662.10.1161/01.CIR.0000012748.58444.08Search in Google Scholar

Hecker, M., Sessa, W.C., Harris, H.J., Anggard, E.E., and Vane, J.R. (1990). The metabolism of l-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle l-citrulline to l-arginine. Proc. Natl. Acad. Sci. USA87, 8612–8616.10.1073/pnas.87.21.8612Search in Google Scholar PubMed PubMed Central

Hein, T.W., Zhang, C., Wang, W., Chang, C.I., Thengchaisri, N., and Kuo, L. (2003). Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. FASEB J.17, 2328–2330.10.1096/fj.03-0115fjeSearch in Google Scholar PubMed

Heinzel, B., John, M., Klatt, P., Bohme, E., and Mayer, B. (1992). Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem. J.281, 627–630.10.1042/bj2810627Search in Google Scholar PubMed PubMed Central

Heitzer, T., Just, H., and Munzel, T. (1996). Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation94, 6–9.10.1161/01.CIR.94.1.6Search in Google Scholar PubMed

Heitzer, T., Brockhoff, C., Mayer, B., Warnholtz, A., Mollnau, H., Henne, S., Meinertz, T., and Munzel, T. (2000a). Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ. Res.86, E36–41.10.1161/01.RES.86.2.e36Search in Google Scholar PubMed

Heitzer, T., Krohn, K., Albers, S., and Meinertz, T. (2000b). Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia43, 1435–1438.10.1007/s001250051551Search in Google Scholar PubMed

Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T., and Munzel, T. (2001). Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation104, 2673–2678.10.1161/hc4601.099485Search in Google Scholar PubMed

Heller, R., Werner-Felmayer, G., and Werner, E.R. (2006). Antioxidants and endothelial nitric oxide synthesis. Eur. J. Clin. Pharmacol.62 (Suppl. 13), 21–28.10.1007/s00228-005-0009-7Search in Google Scholar

Hemmens, B., Goessler, W., Schmidt, K., and Mayer, B. (2000). Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase. J. Biol. Chem.275, 35786–35791.10.1074/jbc.M005976200Search in Google Scholar

Hemmens, B. and Mayer, B. (1998). Enzymology of nitric oxide synthases. Methods Mol. Biol.100, 1–32.Search in Google Scholar

Hercberg, S., Galan, P., Preziosi, P., Bertrais, S., Mennen, L., Malvy, D., Roussel, A.M., Favier, A., and Briancon, S. (2004). The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch. Intern. Med.164, 2335–2342.Search in Google Scholar

Higashi, Y., Sasaki, S., Nakagawa, K., Fukuda, Y., Matsuura, H., Oshima, T., and Chayama, K. (2002). Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am. J. Hypertens.15, 326–332.10.1016/S0895-7061(01)02317-2Search in Google Scholar

Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., Skatchkov, M., Thaiss, F., Stahl, R.A., Warnholtz, A., et al. (2001). Mechanisms underlying Endothelial dysfunction in diabetes mellitus. Circ. Res.88, E14–E22.10.1161/01.RES.88.2.e14Search in Google Scholar

Hishikawa, K., Nakaki, T., Suzuki, H., Kato, R., and Saruta, T. (1993). Role of l-arginine nitric oxide pathway in hypertension. J. Hypertens.11, 639–645.10.1097/00004872-199306000-00008Search in Google Scholar

Hogan, M., Cerami, A., and Bucala, R. (1992). Advanced glycosylation endproducts block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus. J. Clin. Invest.90, 1110–1115.Search in Google Scholar

Hong, H.-J., Hsiao, G., Cheng, T.-H., and Yen, M.-H. (2001). Supplementation with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension38, 1044–1048.10.1161/hy1101.095331Search in Google Scholar

Honing, M.L., Morrison, P.J., Banga, J.D., Stroes, E.S., and Rabelink, T.J. (1998). Nitric oxide availability in diabetes mellitus. Diabetes Metab. Rev.14, 241–249.10.1002/(SICI)1099-0895(1998090)14:3<241::AID-DMR216>3.0.CO;2-RSearch in Google Scholar

Hornig, B., Landmesser, U., Kohler, C., Ahlersmann, D., Spiekermann, S., Christoph, A., Tatge, H., and Drexler, H. (2001). Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation103, 799–805.10.1161/01.CIR.103.6.799Search in Google Scholar

Ignarro, L.J., Harbison, R.G., Wood, K.S., and Kadowitz, P.J. (1986). Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J. Pharmacol. Exp. Ther.237, 893–900.Search in Google Scholar

Imaizumi, T., Hirooka, Y., Masaki, H., Harada, S., Momohara, M., Tagawa, T., and Takeshita, A. (1992). Effects of l-arginine on forearm vessels and responses to acetylcholine. Hypertension20, 511–517.10.1161/01.HYP.20.4.511Search in Google Scholar

Johnson, F.K., Johnson, R.A., Peyton, K.J., and Durante, W. (2005). Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol.288, R1057–1062.10.1152/ajpregu.00758.2004Search in Google Scholar

Kerr, S., Brosnan, M.J., McIntyre, M., Reid, J.L., Dominiczak, A.F., and Hamilton, C.A. (1999). Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension33, 1353–1358.10.1161/01.HYP.33.6.1353Search in Google Scholar

Kinlay, S., Behrendt, D., Fang, J.C., Delagrange, D., Morrow, J., Witztum, J.L., Rifai, N., Selwyn, A.P., Creager, M.A., and Ganz, P. (2004). Long-term effect of combined vitamins E and C on coronary and peripheral endothelial function. J. Am. Coll. Cardiol.43, 629–634.10.1016/j.jacc.2003.08.051Search in Google Scholar

Klatt, P., Pfeiffer, S., List, B.M., Lehner, D., Glatter, O., Bachinger, H.P., Werner, E.R., Schmidt, K., and Mayer, B. (1996). Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin. J. Biol. Chem.271, 7336–7342.10.1074/jbc.271.13.7336Search in Google Scholar

Klingbeil, A.U., John, S., Schneider, M.P., Jacobi, J., Handrock, R., and Schmieder, R.E. (2003). Effect of AT1 receptor blockade on endothelial function in essential hypertension. Am. J. Hypertens.16, 123–128.10.1016/S0895-7061(02)03154-0Search in Google Scholar

Kotsonis, P., Frohlich, L.G., Shutenko, Z.V., Horejsi, R., Pfleiderer, W., and Schmidt, H.H. (2000). Allosteric regulation of neuronal nitric oxide synthase by tetrahydrobiopterin and suppression of auto-damaging superoxide. Biochem. J.346, 767–776.10.1042/bj3460767Search in Google Scholar

Kubes, P., Suzuki, M., and Granger, D.N. (1991). Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA88, 4651–4655.10.1073/pnas.88.11.4651Search in Google Scholar PubMed PubMed Central

Kureishi, Y., Luo, Z., Shiojima, I., Bialik, A., Fulton, D., Lefer, D.J., Sessa, W.C., and Walsh, K. (2000). The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med.6, 1004–1010.10.1038/79510Search in Google Scholar PubMed PubMed Central

Kuzkaya, N., Weissmann, N., Harrison, D.G., and Dikalov, S. (2003). Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J. Biol. Chem.278, 22546–22554.10.1074/jbc.M302227200Search in Google Scholar PubMed

Landmesser, U., Merten, R., Spiekermann, S., Buttner, K., Drexler, H., and Hornig, B. (2000). Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation101, 2264–2270.10.1161/01.CIR.101.19.2264Search in Google Scholar PubMed

Landmesser, U., Dikalov, S., Price, S.R., McCann, L., Fukai, T., Holland, S.M., Mitch, W.E., and Harrison, D.G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest.111, 1201–1209.10.1172/JCI200314172Search in Google Scholar

Landmesser, U., Bahlmann, F., Mueller, M., Spiekermann, S., Kirchhoff, N., Schulz, S., Manes, C., Fischer, D., de Groot, K., Fliser, D., et al. (2005). Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation111, 2356–2363.10.1161/01.CIR.0000164260.82417.3FSearch in Google Scholar

Laufs, U. and Liao, J.K. (1998). Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem.273, 24266–24271.10.1074/jbc.273.37.24266Search in Google Scholar

Laursen, J.B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., Freeman, B.A., Tarpey, M., Fukai, T., and Harrison, D.G. (2001). Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation103, 1282–1288.10.1161/01.CIR.103.9.1282Search in Google Scholar

Li, H. and Forstermann, U. (2000). Structure-activity relationship of staurosporine analogs in regulating expression of endothelial nitric-oxide synthase gene. Mol. Pharmacol.57, 427–435.10.1124/mol.57.3.427Search in Google Scholar

Li, H., Oehrlein, S.A., Wallerath, T., Ihrig-Biedert, I., Wohlfart, P., Ulshöfer, T., Jessen, T., Herget, T., Förstermann, U., and Kleinert, H. (1998). Activation of protein kinase C α and/or ε enhances transcription of the human endothelial nitric oxide synthase gene. Mol. Pharmacol.53, 630–637.10.1124/mol.53.4.630Search in Google Scholar

Li, H., Raman, C.S., Glaser, C.B., Blasko, E., Young, T.A., Parkinson, J.F., Whitlow, M., and Poulos, T.L. (1999). Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. J. Biol. Chem.274, 21276–21284.10.1074/jbc.274.30.21276Search in Google Scholar

Li, H., Hergert, S.M., Schafer, S.C., Brausch, I., Yao, Y., Huang, Q., Mang, C., Lehr, H.A., and Forstermann, U. (2005). Midostaurin upregulates eNOS gene expression and preserves eNOS function in the microcirculation of the mouse. Nitric Oxide12, 231–236.10.1016/j.niox.2005.04.001Search in Google Scholar

Li, H., Witte, K., August, M., Brausch, I., Gödtel-Armbrust, U., Habermeier, A., Closs, E.I., Oelze, M., Münzel, T., and Förstermann, U. (2006). Reversal of eNOS uncoupling and upregulation of eNOS expression lowers blood pressure in hypertensive rats. J. Am. Coll. Cardiol.47, 2536–2544.10.1016/j.jacc.2006.01.071Search in Google Scholar

Liao, J.K. (2002). Beyond lipid lowering: the role of statins in vascular protection. Int. J. Cardiol.86, 5–18.10.1016/S0167-5273(02)00195-XSearch in Google Scholar

Lin, K.Y., Ito, A., Asagami, T., Tsao, P.S., Adimoolam, S., Kimoto, M., Tsuji, H., Reaven, G.M., and Cooke, J.P. (2002). Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethyl-aminohydrolase. Circulation106, 987–992.10.1161/01.CIR.0000027109.14149.67Search in Google Scholar

Lin, M.I., Fulton, D., Babbitt, R., Fleming, I., Busse, R., Pritchard, K.A. Jr., and Sessa, W.C. (2003). Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of l-arginine metabolism to efficient nitric oxide production. J. Biol. Chem.278, 44719–44726.10.1074/jbc.M302836200Search in Google Scholar PubMed

List, B.M., Klosch, B., Volker, C., Gorren, A.C., Sessa, W.C., Werner, E.R., Kukovetz, W.R., Schmidt, K., and Mayer, B. (1997). Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem. J.323, 159–165.10.1042/bj3230159Search in Google Scholar PubMed PubMed Central

Lonn, E., Bosch, J., Yusuf, S., Sheridan, P., Pogue, J., Arnold, J.M., Ross, C., Arnold, A., Sleight, P., Probstfield, J., and Dagenais, G.R. (2005). Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. J. Am. Med. Assoc.293, 1338–1347.Search in Google Scholar

Mancini, G.B., Henry, G.C., Macaya, C., O'Neill, B.J., Pucillo, A.L., Carere, R.G., Wargovich, T.J., Mudra, H., Luscher, T.F., Klibaner, M.I., et al. (1996). Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation94, 258–265.10.1161/01.CIR.94.3.258Search in Google Scholar

Martasek, P., Miller, R.T., Liu, Q., Roman, L.J., Salerno, J.C., Migita, C.T., Raman, C.S., Gross, S.S., Ikeda-Saito, M., and Masters, B.S. (1998). The C331A mutant of neuronal nitric-oxide synthase is defective in arginine binding. J. Biol. Chem.273, 34799–34805.10.1074/jbc.273.52.34799Search in Google Scholar PubMed

Masters, B.S., McMillan, K., Sheta, E.A., Nishimura, J.S., Roman, L.J., and Martasek, P. (1996). Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates l-arginine to produce NO as a cellular signal. FASEB J.10, 552–558.10.1096/fasebj.10.5.8621055Search in Google Scholar PubMed

McMillan, K., Adler, M., Auld, D.S., Baldwin, J.J., Blasko, E., Browne, L.J., Chelsky, D., Davey, D., Dolle, R.E., Eagen, K.A., et al. (2000). Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc. Natl. Acad. Sci. USA97, 1506–1511.10.1073/pnas.97.4.1506Search in Google Scholar PubMed PubMed Central

McNally, J.S., Davis, M.E., Giddens, D.P., Saha, A., Hwang, J., Dikalov, S., Jo, H., and Harrison, D.G. (2003). Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am. J. Physiol. Heart Circ. Physiol.285, H2290–2297.10.1152/ajpheart.00515.2003Search in Google Scholar PubMed

Miller, R.T., Martasek, P., Roman, L.J., Nishimura, J.S., and Masters, B.S. (1997). Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry36, 15277–15284.10.1021/bi972022cSearch in Google Scholar PubMed

Miller, R.T., Martasek, P., Raman, C.S., and Masters, B.S. (1999). Zinc content of Escherichia coli-expressed constitutive isoforms of nitric-oxide synthase. Enzymatic activity and effect of pterin. J. Biol. Chem.274, 14537–14540.10.1074/jbc.274.21.14537Search in Google Scholar PubMed

Milstien, S. and Katusic, Z. (1999). Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem. Biophys. Res. Commun.263, 681–684.10.1006/bbrc.1999.1422Search in Google Scholar PubMed

Ming, X.F., Barandier, C., Viswambharan, H., Kwak, B.R., Mach, F., Mazzolai, L., Hayoz, D., Ruffieux, J., Rusconi, S., Montani, J.P., and Yang, Z. (2004). Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation110, 3708–3714.10.1161/01.CIR.0000142867.26182.32Search in Google Scholar

Moat, S.J., Clarke, Z.L., Madhavan, A.K., Lewis, M.J., and Lang, D. (2006). Folic acid reverses endothelial dysfunction induced by inhibition of tetrahydrobiopterin biosynthesis. Eur. J. Pharmacol.530, 250–258.10.1016/j.ejphar.2005.11.047Search in Google Scholar

Mollnau, H., Wendt, M., Szocs, K., Lassegue, B., Schulz, E., Oelze, M., Li, H., Bodenschatz, M., August, M., Kleschyov, A.L., et al. (2002). Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ. Res.90, E58–65.10.1161/01.RES.0000012569.55432.02Search in Google Scholar

Morawietz, H., Weber, M., Rueckschloss, U., Lauer, N., Hacker, A., and Kojda, G. (2001). Upregulation of vascular NAD(P)H oxidase subunit gp91phox and impairment of the nitric oxide signal transduction pathway in hypertension. Biochem. Biophys. Res. Commun.285, 1130–1135.10.1006/bbrc.2001.5312Search in Google Scholar

Mueller, C.F., Laude, K., McNally, J.S., and Harrison, D.G. (2005). Redox mechanisms in blood vessels. Arterioscler. Thromb. Vasc. Biol.25, 274–278.10.1161/01.ATV.0000149143.04821.ebSearch in Google Scholar

Münzel, T., Li, H., Mollnau, H., Hink, U., Matheis, E., Hartmann, M., Oelze, M., Skatchkov, M., Warnholtz, A., Duncker, L., et al. (2000). Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ. Res.86, E7–E12.10.1161/01.RES.86.1.e7Search in Google Scholar

Nakaki, T., Nakayama, M., and Kato, R. (1990). Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells. Eur. J. Pharmacol.189, 347–353.10.1016/0922-4106(90)90031-RSearch in Google Scholar

Nickenig, G., Baumer, A.T., Temur, Y., Kebben, D., Jockenhovel, F., and Bohm, M. (1999). Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation100, 2131–2134.10.1161/01.CIR.100.21.2131Search in Google Scholar PubMed

Nishimura, J.S., Martasek, P., McMillan, K., Salerno, J., Liu, Q., Gross, S.S., and Masters, B.S. (1995). Modular structure of neuronal nitric oxide synthase: localization of the arginine binding site and modulation by pterin. Biochem. Biophys. Res. Commun.210, 288–294.10.1006/bbrc.1995.1659Search in Google Scholar PubMed

Noble, M.A., Munro, A.W., Rivers, S.L., Robledo, L., Daff, S.N., Yellowlees, L.J., Shimizu, T., Sagami, I., Guillemette, J.G., and Chapman, S.K. (1999). Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry38, 16413–16418.10.1021/bi992150wSearch in Google Scholar PubMed

Nunokawa, Y. and Tanaka, S. (1992). Interferon-gamma inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem. Biophys. Res. Commun.188, 409–415.10.1016/0006-291X(92)92400-RSearch in Google Scholar

O'Driscoll, J.G., Green, D.J., Rankin, J.M., and Taylor, R.R. (1999). Nitric oxide-dependent endothelial function is unaffected by allopurinol in hypercholesterolaemic subjects. Clin. Exp. Pharmacol. Physiol.26, 779–783.10.1046/j.1440-1681.1999.03125.xSearch in Google Scholar

Ohara, Y., Peterson, T.E., and Harrison, D.G. (1993). Hypercholesterolemia increases endothelial superoxide anion production. J. Clin. Invest.91, 2546–2551.10.1172/JCI116491Search in Google Scholar

Ohishi, M., Ueda, M., Rakugi, H., Naruko, T., Kojima, A., Okamura, A., Higaki, J., and Ogihara, T. (1997). Enhanced expression of angiotensin-converting enzyme is associated with progression of coronary atherosclerosis in humans. J. Hypertens.15, 1295–1302.10.1097/00004872-199715110-00014Search in Google Scholar

Pieper, G.M. (1997). Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J. Cardiovasc. Pharmacol.29, 8–15.10.1097/00005344-199701000-00002Search in Google Scholar

Pollock, J.S., Forstermann, U., Mitchell, J.A., Warner, T.D., Schmidt, H.H., Nakane, M., and Murad, F. (1991). Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA88, 10480–10484.10.1073/pnas.88.23.10480Search in Google Scholar

Pou, S., Pou, W.S., Bredt, D.S., Snyder, S.H., and Rosen, G.M. (1992). Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem.267, 24173–24176.10.1016/S0021-9258(18)35745-4Search in Google Scholar

Pritchard, K.A. Jr., Groszek, L., Smalley, D.M., Sessa, W.C., Wu, M., Villalon, P., Wolin, M.S., and Stemerman, M.B. (1995). Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ. Res.77, 510–518.10.1161/01.RES.77.3.510Search in Google Scholar

Radomski, M.W., Palmer, R.M., and Moncada, S. (1987). The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br. J. Pharmacol.92, 639–646.10.1111/j.1476-5381.1987.tb11367.xSearch in Google Scholar

Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B.A., Griendling, K.K., and Harrison, D.G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest.97, 1916–1923.Search in Google Scholar

Raman, C.S., Li, H., Martasek, P., Kral, V., Masters, B.S., and Poulos, T.L. (1998). Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell95, 939–950.10.1016/S0092-8674(00)81718-3Search in Google Scholar

Rapoport, R.M., Draznin, M.B., and Murad, F. (1983). Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature306, 174–176.10.1038/306174a0Search in Google Scholar

Ridnour, L.A., Thomas, D.D., Mancardi, D., Espey, M.G., Miranda, K.M., Paolocci, N., Feelisch, M., Fukuto, J., and Wink, D.A. (2004). The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem.385, 1–10.Search in Google Scholar

Rosenkranz-Weiss, P., Sessa, W.C., Milstien, S., Kaufman, S., Watson, C.A., and Pober, J.S. (1994). Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J. Clin. Invest.93, 2236–2243.Search in Google Scholar

Rossitch, E., Alexander, E., Black, P.M., and Cooke, J.P. (1991). l-Arginine normalizes endothelial function in cerebral vessels from hypercholesterolemic rabbits. J. Clin. Invest.87, 1295–1299.10.1172/JCI115132Search in Google Scholar

Schmidt, P.P., Lange, R., Gorren, A.C., Werner, E.R., Mayer, B., and Andersson, K.K. (2001). Formation of a protonated trihydrobiopterin radical cation in the first reaction cycle of neuronal and endothelial nitric oxide synthase detected by electron paramagnetic resonance spectroscopy. J. Biol. Inorg. Chem.6, 151–158.10.1007/s007750000185Search in Google Scholar

Shinozaki, K., Kashiwagi, A., Nishio, Y., Okamura, T., Yoshida, Y., Masada, M., Toda, N., and Kikkawa, R. (1999). Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2- imbalance in insulin-resistant rat aorta. Diabetes48, 2437–2445.10.2337/diabetes.48.12.2437Search in Google Scholar

Shinozaki, K., Nishio, Y., Okamura, T., Yoshida, Y., Maegawa, H., Kojima, H., Masada, M., Toda, N., Kikkawa, R., and Kashiwagi, A. (2000). Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin-resistant rats. Circ. Res.87, 566–573.10.1161/01.RES.87.7.566Search in Google Scholar

Simon, A., Plies, L., Habermeier, A., Martine, U., Reining, M., and Closs, E.I. (2003). Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ. Res.93, 813–820.10.1161/01.RES.0000097761.19223.0DSearch in Google Scholar

Sorescu, D., Weiss, D., Lassegue, B., Clempus, R.E., Szocs, K., Sorescu, G.P., Valppu, L., Quinn, M.T., Lambeth, J.D., Vega, J.D., et al. (2002). Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation105, 1429–1435.10.1161/01.CIR.0000012917.74432.66Search in Google Scholar

Southgate, K. and Newby, A.C. (1990). Serum-induced proliferation of rabbit aortic smooth muscle cells from the contractile state is inhibited by 8-Br-cAMP but not 8-Br-cGMP. Atherosclerosis82, 113–123.10.1016/0021-9150(90)90150-HSearch in Google Scholar

Stanner, S.A., Hughes, J., Kelly, C.N., and Buttriss, J. (2004). A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr.7, 407–422.10.1079/PHN2003543Search in Google Scholar PubMed

Stroes, E., Kastelein, J., Cosentino, F., Erkelens, W., Wever, R., Koomans, H., Luscher, T., and Rabelink, T. (1997). Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J. Clin. Invest.99, 41–46.10.1172/JCI119131Search in Google Scholar PubMed PubMed Central

Stroes, E.S., van Faassen, E.E., Yo, M., Martasek, P., Boer, P., Govers, R., and Rabelink, T.J. (2000). Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ. Res.86, 1129–1134.10.1161/01.RES.86.11.1129Search in Google Scholar

Stuehr, D., Pou, S., and Rosen, G.M. (2001). Oxygen reduction by nitric-oxide synthases. J. Biol. Chem.276, 14533–14536.10.1074/jbc.R100011200Search in Google Scholar

Sydow, K. and Munzel, T. (2003). ADMA and oxidative stress. Atheroscler.Suppl. 4, 41–51.10.1016/S1567-5688(03)00033-3Search in Google Scholar

Ting, H.H., Timimi, F.K., Boles, K.S., Creager, S.J., Ganz, P., and Creager, M.A. (1996). Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest.97, 22–28.10.1172/JCI118394Search in Google Scholar PubMed PubMed Central

Ueda, S. and Yasunari, K. (2006). What we learnt from randomized clinical trials and cohort studies of antioxidant vitamin? Focus on vitamin E and cardiovascular disease. Curr. Pharm. Biotechnol.7, 69–72.10.2174/138920106776597649Search in Google Scholar PubMed

van Etten, R.W., de Koning, E.J., Verhaar, M.C., Gaillard, C.A., and Rabelink, T.J. (2002). Impaired NO-dependent vasodilation in patients with type II (non-insulin-dependent) diabetes mellitus is restored by acute administration of folate. Diabetologia45, 1004–1010.10.1007/s00125-002-0862-1Search in Google Scholar PubMed

Vaziri, N.D., Ni, Z., and Oveisi, F. (1998). Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats. Hypertension31, 1248–1254.10.1161/01.HYP.31.6.1248Search in Google Scholar PubMed

Vergnani, L., Hatrik, S., Ricci, F., Passaro, A., Manzoli, N., Zuliani, G., Brovkovych, V., Fellin, R., and Malinski, T. (2000). Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of l-arginine availability. Circulation101, 1261–1266.10.1161/01.CIR.101.11.1261Search in Google Scholar PubMed

Verhaar, M.C., Wever, R.M., Kastelein, J.J., van Dam, T., Koomans, H.A., and Rabelink, T.J. (1998). 5-Methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation97, 237–241.10.1161/01.CIR.97.3.237Search in Google Scholar

Verhaar, M.C., Stroes, E., and Rabelink, T.J. (2002). Folates and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.22, 6–13.10.1161/hq0102.102190Search in Google Scholar PubMed

Violi, F. and Cangemi, R. (2005). Antioxidants and cardiovascular disease. Curr. Opin. Investig. Drugs6, 895–900.Search in Google Scholar

Vivekananthan, D.P., Penn, M.S., Sapp, S.K., Hsu, A., and Topol, E.J. (2003). Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet361, 2017–2023.10.1016/S0140-6736(03)13637-9Search in Google Scholar

Wagner, A.H., Kohler, T., Ruckschloss, U., Just, I., and Hecker, M. (2000). Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc. Biol.20, 61–69.10.1161/01.ATV.20.1.61Search in Google Scholar

Warnholtz, A., Nickenig, G., Schulz, E., Macharzina, R., Brasen, J.H., Skatchkov, M., Heitzer, T., Stasch, J.P., Griendling, K.K., Harrison, D.G., et al. (1999). Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation99, 2027–2033.10.1161/01.CIR.99.15.2027Search in Google Scholar

Wassmann, S., Hilgers, S., Laufs, U., Bohm, M., and Nickenig, G. (2002). Angiotensin II type 1 receptor antagonism improves hypercholesterolemia-associated endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol.22, 1208–1212.10.1161/01.ATV.0000022847.38083.B6Search in Google Scholar

Werner, E.R., Gorren, A.C., Heller, R., Werner-Felmayer, G., and Mayer, B. (2003). Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp. Biol. Med.228, 1291–1302.10.1177/153537020322801108Search in Google Scholar

Werner-Felmayer, G., Werner, E.R., Fuchs, D., Hausen, A., Reibnegger, G., Schmidt, K., Weiss, G., and Wachter, H. (1993). Pteridine biosynthesis in human endothelial cells. Impact on nitric oxide-mediated formation of cyclic GMP. J. Biol. Chem.268, 1842–1846.Search in Google Scholar

White, C.R., Brock, T.A., Chang, L.Y., Crapo, J., Briscoe, P., Ku, D., Bradley, W.A., Gianturco, S.H., Gore, J., Freeman, B.A., and Tarpey, M.M. (1994). Superoxide and peroxynitrite in atherosclerosis. Proc. Natl. Acad. Sci. USA91, 1044–1048.10.1073/pnas.91.3.1044Search in Google Scholar

White, C.R., Darley-Usmar, V., Berrington, W.R., McAdams, M., Gore, J.Z., Thompson, J.A., Parks, D.A., Tarpey, M.M., and Freeman, B.A. (1996). Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc. Natl. Acad. Sci. USA93, 8745–8749.10.1073/pnas.93.16.8745Search in Google Scholar

Whitsett, J., Martasek, P., Zhao, H., Schauer, D.W., Hatakeyama, K., Kalyanaraman, B., and Vasquez-Vivar, J. (2006). Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution. Free Radic. Biol. Med.40, 2056–2068.10.1016/j.freeradbiomed.2006.02.001Search in Google Scholar

Wilmink, H.W., Stroes, E.S., Erkelens, W.D., Gerritsen, W.B., Wever, R., Banga, J.D., and Rabelink, T.J. (2000). Influence of folic acid on postprandial endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol.20, 185–188.10.1161/01.ATV.20.1.185Search in Google Scholar

Woo, K.S., Chook, P., Lolin, Y.I., Sanderson, J.E., Metreweli, C., and Celermajer, D.S. (1999). Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J. Am. Coll. Cardiol.34, 2002–2006.10.1016/S0735-1097(99)00469-6Search in Google Scholar

Xia, Y., Tsai, A.L., Berka, V., and Zweier, J.L. (1998). Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J. Biol. Chem.273, 25804–25808.10.1074/jbc.273.40.25804Search in Google Scholar PubMed

Xu, W., Kaneko, F.T., Zheng, S., Comhair, S.A., Janocha, A.J., Goggans, T., Thunnissen, F.B., Farver, C., Hazen, S.L., Jennings, C., et al. (2004). Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J.18, 1746–1748.10.1096/fj.04-2317fjeSearch in Google Scholar PubMed

Yamashiro, S., Kuniyoshi, Y., Arakaki, K., Miyagi, K., and Koja, K. (2002). The effect of insufficiency of tetrahydrobiopterin on endothelial function and vasoactivity. Jpn. J. Thorac. Cardiovasc. Surg.50, 472–477.10.1007/BF02919638Search in Google Scholar PubMed

Zhang, C., Hein, T.W., Wang, W., Chang, C.I., and Kuo, L. (2001). Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. FASEB J.15, 1264–1266.10.1096/fj.00-0681fjeSearch in Google Scholar PubMed

Zhang, C., Hein, T.W., Wang, W., Miller, M.W., Fossum, T.W., McDonald, M.M., Humphrey, J.D., and Kuo, L. (2004). Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles. Hypertension44, 935–943.10.1161/01.HYP.0000146907.82869.f2Search in Google Scholar PubMed

Published Online: 2006-11-28
Published in Print: 2006-12-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.190/html
Scroll to top button