Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 9, 2006

Caspase-containing complexes in the regulation of cell death and inflammation

  • Nele Festjens , Sigrid Cornelis , Mohamed Lamkanfi and Peter Vandenabeele
From the journal Biological Chemistry

Abstract

Caspases are a family of cysteine proteases that are essential in the initiation and execution of apoptosis and the proteolytic maturation of inflammatory cytokines such as IL-1β and IL-18. Caspases can be subdivided into those that have a large prodomain and those that have not. In general, apoptotic and inflammatory signalling pathways are initiated when large-prodomain caspases are recruited to large protein complexes via homotypic interactions involving death domain folds. The formation of these specialised multimeric platforms involves three major functions: (1) the sensing of cellular stress, damage, infection or inflammation; (2) multimerisation of the platform; and (3) recruitment and conformational activation of caspases. In this overview we discuss the complexes implicated in the regulation of cell death and inflammatory processes such as the death-inducing signalling complex (DISC), the apoptosome, the inflammasomes and the PIDDosome. We describe their sensing functions, compositions and functional outcomes. Inhibitory protein families such as FLIPs and CARD-only proteins prevent the recruitment of caspases in these sensing complexes, avoiding inappropriate initiation of cell death or inflammation.

:

Corresponding author

References

Acehan, D., Jiang, X., Morgan, D.G., Heuser, J.E., Wang, X., and Akey, C.W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell9, 423–432.10.1016/S1097-2765(02)00442-2Search in Google Scholar

Adrain, C., Slee, E.A., Harte, M.T., and Martin, S.J. (1999). Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J. Biol. Chem.274, 20855–20860.10.1074/jbc.274.30.20855Search in Google Scholar

Agostini, L., Martinon, F., Burns, K., McDermott, M.F., Hawkins, P.N., and Tschopp, J. (2004). NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity20, 319–325.10.1016/S1074-7613(04)00046-9Search in Google Scholar

Ahmad, M., Srinivasula, S.M., Wang, L., Talanian, R.V., Litwack, G., Fernandes-Alnemri, T., and Alnemri, E.S. (1997). CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res.57, 615–619.Search in Google Scholar

Baliga, B.C., Colussi, P.A., Read, S.H., Dias, M.M., Jans, D.A., and Kumar, S. (2003). Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J. Biol. Chem.278, 4899–4905.10.1074/jbc.M211512200Search in Google Scholar

Baliga, B.C., Read, S.H., and Kumar, S. (2004). The biochemical mechanism of caspase-2 activation. Cell Death Differ.11, 1234–1241.10.1038/sj.cdd.4401492Search in Google Scholar

Bao, Q., Riedl, S.J., and Shi, Y. (2005). Structure of Apaf-1 in the auto-inhibited form: a critical role for ADP. Cell Cycle4, 1001–1003.10.4161/cc.4.8.1849Search in Google Scholar

Barnhart, B.C., Alappat, E.C., and Peter, M.E. (2003). The CD95 type I/type II model. Semin. Immunol.15, 185–193.10.1016/S1044-5323(03)00031-9Search in Google Scholar

Beem, E., Holliday, L.S., and Segal, M.S. (2004). The 1.4-MDa apoptosome is a critical intermediate in apoptosome maturation. Am. J. Physiol. Cell Physiol.287, C664–672.Search in Google Scholar

Bergeron, L., Perez, G.I., MacDonald, G., Shi, L., Sun, Y., Jurisicova, A., Varmuza, S., Latham, K.E., Flaws, J.A., Salter, J.C., et al. (1998). Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev.12, 1304–1314.10.1101/gad.12.9.1304Search in Google Scholar

Boatright, K.M. and Salvesen, G.S. (2003). Mechanisms of caspase activation. Curr. Opin. Cell Biol.15, 725–731.10.1016/j.ceb.2003.10.009Search in Google Scholar

Boatright, K.M., Renatus, M., Scott, F.L., Sperandio, S., Shin, H., Pedersen, I.M., Ricci, J.E., Edris, W.A., Sutherlin, D.P., Green, D.R., and Salvesen, G.S. (2003). A unified model for apical caspase activation. Mol. Cell11, 529–541.10.1016/S1097-2765(03)00051-0Search in Google Scholar

Boatright, K.M., Deis, C., Denault, J.B., Sutherlin, D.P., and Salvesen, G.S. (2004). Activation of caspases-8 and -10 by FLIP(L). Biochem. J.382, 651–657.10.1042/BJ20040809Search in Google Scholar

Bonfoco, E., Li, E., Kolbinger, F., and Cooper, N.R. (2001). Characterization of a novel proapoptotic caspase-2- and caspase-9-binding protein. J. Biol. Chem.276, 29242–29250.10.1074/jbc.M100684200Search in Google Scholar

Bratton, S.B., Walker, G., Srinivasula, S.M., Sun, X.M., Butterworth, M., Alnemri, E.S., and Cohen, G.M. (2001). Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J.20, 998–1009.10.1093/emboj/20.5.998Search in Google Scholar

Budd, R.C., Yeh, W.C., and Tschopp, J. (2006). cFLIP regulation of lymphocyte activation and development. Nat. Rev. Immunol.6, 196–204.10.1038/nri1787Search in Google Scholar

Cain, K., Bratton, S.B., and Cohen, G.M. (2002). The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie84, 203–214.10.1016/S0300-9084(02)01376-7Search in Google Scholar

Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., et al. (1992). Molecular cloning of the interleukin-1β converting enzyme. Science256, 97–100.10.1126/science.1373520Search in Google Scholar

Chang, D.W., Xing, Z., Pan, Y., Algeciras-Schimnich, A., Barnhart, B.C., Yaish-Ohad, S., Peter, M.E., and Yang, X. (2002). c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J.21, 3704–3714.10.1093/emboj/cdf356Search in Google Scholar

Chang, L., Kamata, H., Solinas, G., Luo, J.L., Maeda, S., Venuprasad, K., Liu, Y.C., and Karin, M. (2006). The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIP(L) turnover. Cell124, 601–613.10.1016/j.cell.2006.01.021Search in Google Scholar

Chao, Y., Shiozaki, E.N., Srinivasula, S.M., Rigotti, D.J., Fairman, R., and Shi, Y. (2005). Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol.3, e183.10.1371/journal.pbio.0030183Search in Google Scholar

Chou, J.J., Matsuo, H., Duan, H., and Wagner, G. (1998). Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell94, 171–180.10.1016/S0092-8674(00)81417-8Search in Google Scholar

Dalton, D.K., Pitts-Meek, S., Keshav, S., Figari, I.S., Bradley, A., and Stewart, T.A. (1993). Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science259, 1739–1742.10.1126/science.8456300Search in Google Scholar

Devin, A., Cook, A., Lin, Y., Rodriguez, Y., Kelliher, M., and Liu, Z. (2000). The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity12, 419–429.10.1016/S1074-7613(00)80194-6Search in Google Scholar

Dinarello, C.A. (2002). The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol.20, S1–13.Search in Google Scholar

Dohrman, A., Kataoka, T., Cuenin, S., Russell, J.Q., Tschopp, J., and Budd, R.C. (2005). Cellular FLIP (long form) regulates CD8+ T cell activation through caspase-8-dependent NF-κB activation. J. Immunol.174, 5270–5278.10.4049/jimmunol.174.9.5270Search in Google Scholar

Donepudi, M., MacSweeney, A., Briand, C., and Grutter, M.G. (2003). Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell11, 543–549.10.1016/S1097-2765(03)00059-5Search in Google Scholar

Droin, N., Bichat, F., Rebe, C., Wotawa, A., Sordet, O., Hammann, A., Bertrand, R., and Solary, E. (2001). Involvement of caspase-2 long isoform in Fas-mediated cell death of human leukemic cells. Blood97, 1835–1844.10.1182/blood.V97.6.1835Search in Google Scholar PubMed

Druilhe, A., Srinivasula, S.M., Razmara, M., Ahmad, M., and Alnemri, E.S. (2001). Regulation of IL-1β generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ.8, 649–657.10.1038/sj.cdd.4400881Search in Google Scholar PubMed

Duan, H. and Dixit, V.M. (1997). RAIDD is a new ‘death’ adaptor molecule. Nature385, 86–89.10.1038/385086a0Search in Google Scholar PubMed

Eberstadt, M., Huang, B., Chen, Z., Meadows, R.P., Ng, S.C., Zheng, L., Lenardo, M.J., and Fesik, S.W. (1998). NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature392, 941–945.10.1038/31972Search in Google Scholar PubMed

Enoksson, M., Robertson, J.D., Gogvadze, V., Bu, P., Kropotov, A., Zhivotovsky, B., and Orrenius, S. (2004). Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J. Biol. Chem.279, 49575–49578.10.1074/jbc.C400374200Search in Google Scholar PubMed

Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., and Henson, P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol.148, 2207–2216.10.4049/jimmunol.148.7.2207Search in Google Scholar

Fiorentino, L., Stehlik, C., Oliveira, V., Ariza, M.E., Godzik, A., and Reed, J.C. (2002). A novel PAAD-containing protein that modulates NF-κB induction by cytokines tumor necrosis factor-α and interleukin-1β. J. Biol. Chem.277, 35333–35340.10.1074/jbc.M200446200Search in Google Scholar PubMed

Fischer, H., Koenig, U., Eckhart, L., and Tschachler, E. (2002). Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun.293, 722–726.10.1016/S0006-291X(02)00289-9Search in Google Scholar

Gallucci, S., Lolkema, M., and Matzinger, P. (1999). Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5, 1249–1255.10.1038/15200Search in Google Scholar PubMed

Gao, Z., Shao, Y., and Jiang, X. (2005). Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. J. Biol. Chem.280, 38271–38275.10.1074/jbc.M506488200Search in Google Scholar PubMed

Ghayur, T., Banerjee, S., Hugunin, M., Butler, D., Herzog, L., Carter, A., Quintal, L., Sekut, L., Talanian, R., Paskind, M., et al. (1997). Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature386, 619–623.10.1038/386619a0Search in Google Scholar PubMed

Gracie, J.A., Robertson, S.E., and McInnes, I.B. (2003). Interleukin-18. J. Leukoc. Biol.73, 213–224.10.1189/jlb.0602313Search in Google Scholar PubMed

Guo, Y., Srinivasula, S.M., Druilhe, A., Fernandes-Alnemri, T., and Alnemri, E.S. (2002). Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem.277, 13430–13437.10.1074/jbc.M108029200Search in Google Scholar PubMed

Harper, N., Hughes, M., MacFarlane, M., and Cohen, G.M. (2003). Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem.278, 25534–25541.10.1074/jbc.M303399200Search in Google Scholar PubMed

Hawkins, P.N., Lachmann, H.J., Aganna, E., and McDermott, M.F. (2004). Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum.50, 607–612.10.1002/art.20033Search in Google Scholar PubMed

Hlaing, T., Guo, R.F., Dilley, K.A., Loussia, J.M., Morrish, T.A., Shi, M.M., Vincenz, C., and Ward, P.A. (2001). Molecular cloning and characterization of DEFCAP-L and -S, two isoforms of a novel member of the mammalian Ced-4 family of apoptosis proteins. J. Biol. Chem.276, 9230–9238.10.1074/jbc.M009853200Search in Google Scholar PubMed

Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A., and Kolodner, R.D. (2001). Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet.29, 301–305.10.1038/ng756Search in Google Scholar PubMed PubMed Central

Hsu, H., Huang, J., Shu, H.B., Baichwal, V., and Goeddel, D.V. (1996a). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity4, 387–396.10.1016/S1074-7613(00)80252-6Search in Google Scholar

Hsu, H., Shu, H.B., Pan, M.G., and Goeddel, D.V. (1996b). TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell84, 299–308.10.1016/S0092-8674(00)80984-8Search in Google Scholar

Huang, B., Eberstadt, M., Olejniczak, E.T., Meadows, R.P., and Fesik, S.W. (1996). NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature384, 638–641.10.1038/384638a0Search in Google Scholar

Hugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., Almer, S., Tysk, C., O'Morain, C.A., Gassull, M., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603.10.1038/35079107Search in Google Scholar

Hull, K.M., Shoham, N., Chae, J.J., Aksentijevich, I., and Kastner, D.L. (2003). The expanding spectrum of systemic autoinflammatory disorders and their rheumatic manifestations. Curr. Opin. Rheumatol.15, 61–69.10.1097/00002281-200301000-00011Search in Google Scholar

Humke, E.W., Shriver, S.K., Starovasnik, M.A., Fairbrother, W.J., and Dixit, V.M. (2000). ICEBERG: a novel inhibitor of interleukin-1β generation. Cell103, 99–111.10.1016/S0092-8674(00)00108-2Search in Google Scholar

Hur, G.M., Lewis, J., Yang, Q., Lin, Y., Nakano, H., Nedospasov, S., and Liu, Z.G. (2003). The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev.17, 873–882.10.1101/gad.1062403Search in Google Scholar PubMed PubMed Central

Inohara, N., Koseki, T., Del Peso, L., Hu, Y., Yee, C., Chen, S., Carrio, R., Merino, J., Liu, D., Ni, J., and Nunez, G. (1999). Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem.274, 14560–14567.10.1074/jbc.274.21.14560Search in Google Scholar PubMed

Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J.L., Schroter, M., Burns, K., Mattmann, C., et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature388, 190–195.10.1038/40657Search in Google Scholar PubMed

Janeway, C.A. Jr. and Medzhitov, R. (2002). Innate immune recognition. Annu. Rev. Immunol.20, 197–216.10.1146/annurev.immunol.20.083001.084359Search in Google Scholar PubMed

Janssens, S., Tinel, A., Lippens, S., and Tschopp, J. (2005). PIDD mediates NF-κB activation in response to DNA damage. Cell123, 1079–1092.10.1016/j.cell.2005.09.036Search in Google Scholar

Jaroszewski, L., Rychlewski, L., Reed, J.C., and Godzik, A. (2000). ATP-activated oligomerization as a mechanism for apoptosis regulation: fold and mechanism prediction for CED-4. Proteins39, 197–203.10.1002/(SICI)1097-0134(20000515)39:3<197::AID-PROT10>3.0.CO;2-VSearch in Google Scholar

Jesenberger, V., Procyk, K.J., Yuan, J., Reipert, S., and Baccarini, M. (2000). Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J. Exp. Med.192, 1035–1046.10.1084/jem.192.7.1035Search in Google Scholar

Jiang, M. and Milner, J. (2003). Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev.17, 832–837.10.1101/gad.252603Search in Google Scholar

Jiang, X. and Wang, X. (2000). Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem.275, 31199–31203.10.1074/jbc.C000405200Search in Google Scholar

Kahlenberg, J.M., Lundberg, K.C., Kertesy, S.B., Qu, Y., and Dubyak, G.R. (2005). Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-κB-driven protein synthesis. J. Immunol.175, 7611–7622.10.4049/jimmunol.175.11.7611Search in Google Scholar

Kanneganti, T.D., Ozoren, N., Body-Malapel, M., Amer, A., Park, J.H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., et al. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature440, 233–236.10.1038/nature04517Search in Google Scholar

Kataoka, T. and Tschopp, J. (2004). N-Terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-κB signaling pathway. Mol. Cell. Biol.24, 2627–2636.10.1128/MCB.24.7.2627-2636.2004Search in Google Scholar

Kennedy, N.J., Kataoka, T., Tschopp, J., and Budd, R.C. (1999). Caspase activation is required for T cell proliferation. J. Exp. Med.190, 1891–1896.10.1084/jem.190.12.1891Search in Google Scholar

Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer26, 239–257.10.1038/bjc.1972.33Search in Google Scholar

Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., and Peter, M.E. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J.14, 5579–5588.10.1002/j.1460-2075.1995.tb00245.xSearch in Google Scholar PubMed PubMed Central

Kobayashi, K., Inohara, N., Hernandez, L.D., Galan, J.E., Nunez, G., Janeway, C.A., Medzhitov, R., and Flavell, R.A. (2002). RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature416, 194–199.10.1038/416194aSearch in Google Scholar PubMed

Kohl, A. and Grutter, M.G. (2004). Fire and death: the pyrin domain joins the death-domain superfamily. C. R. Biol.327, 1077–1086.10.1016/j.crvi.2004.08.006Search in Google Scholar PubMed

Koseki, T., Inohara, N., Chen, S., and Nunez, G. (1998). ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc. Natl. Acad. Sci. USA95, 5156–5160.10.1073/pnas.95.9.5156Search in Google Scholar PubMed PubMed Central

Kreuz, S., Siegmund, D., Rumpf, J.J., Samel, D., Leverkus, M., Janssen, O., Hacker, G., Dittrich-Breiholz, O., Kracht, M., Scheurich, P., and Wajant, H. (2004). NF-κB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J. Cell Biol.166, 369–380.10.1083/jcb.200401036Search in Google Scholar PubMed PubMed Central

Krueger, J.M. and Majde, J.A. (2003). Humoral links between sleep and the immune system: research issues. Ann. NY Acad. Sci.992, 9–20.10.1111/j.1749-6632.2003.tb03133.xSearch in Google Scholar PubMed

Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G., and Jenkins, N.A. (1994). Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1β-converting enzyme. Genes Dev.8, 1613–1626.10.1101/gad.8.14.1613Search in Google Scholar PubMed

Lamkanfi, M., Declercq, W., Kalai, M., Saelens, X., and Vandenabeele, P. (2002). Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ.9, 358–361.Search in Google Scholar

Lamkanfi, M., Denecker, G., Kalai, M., D'hondt, K., Meeus, A., Declercq, W., Saelens, X., and Vandenabeele, P. (2004a). INCA, a novel human caspase recruitment domain protein that inhibits interleukin-1β generation. J. Biol. Chem.279, 51729–51738.10.1074/jbc.M407891200Search in Google Scholar PubMed

Lamkanfi, M., Kalai, M., Saelens, X., Declercq, W., and Vandenabeele, P. (2004b). Caspase-1 activates nuclear factor of the κ-enhancer in B cells independently of its enzymatic activity. J. Biol. Chem.279, 24785–24793.10.1074/jbc.M400985200Search in Google Scholar PubMed

Lamkanfi, M., D'hondt, K., Vande Walle, L., Van Gurp, M., Denecker, G., Demeulemeester, J., Kalai, M., Declercq, W., Saelens, X., and Vandenabeele, P. (2005). A novel caspase-2 complex containing TRAF2 and RIP1. J. Biol. Chem.280, 6923–6932.10.1074/jbc.M411180200Search in Google Scholar PubMed

Lassus, P., Opitz-Araya, X., and Lazebnik, Y. (2002). Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science297, 1352–1354.10.1126/science.1074721Search in Google Scholar

Lee, S.H., Stehlik, C., and Reed, J.C. (2001). Cop, a caspase recruitment domain-containing protein and inhibitor of caspase-1 activation processing. J. Biol. Chem.276, 34495–34500.10.1074/jbc.M101415200Search in Google Scholar

Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489.10.1016/S0092-8674(00)80434-1Search in Google Scholar

Lin, C.F., Chen, C.L., Chang, W.T., Jan, M.S., Hsu, L.J., Wu, R.H., Fang, Y.T., Tang, M.J., Chang, W.C., and Lin, Y.S. (2005). Bcl-2 rescues ceramide- and etoposide-induced mitochondrial apoptosis through blockage of caspase-2 activation. J. Biol. Chem.280, 23758–23765.10.1074/jbc.M412292200Search in Google Scholar

Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell86, 147–157.10.1016/S0092-8674(00)80085-9Search in Google Scholar

Maeda, S., Hsu, L.C., Liu, H., Bankston, L.A., Iimura, M., Kagnoff, M.F., Eckmann, L., and Karin, M. (2005). Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science307, 734–738.10.1126/science.1103685Search in Google Scholar PubMed

Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430, 213–218.10.1038/nature02664Search in Google Scholar PubMed

Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., Lee, W.P., Weinrauch, Y., Monack, D.M., and Dixit, V.M. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232.10.1038/nature04515Search in Google Scholar PubMed

Martinon, F. and Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell117, 561–574.10.1016/j.cell.2004.05.004Search in Google Scholar PubMed

Martinon, F. and Tschopp, J. (2005). NLRs join TLRs as innate sensors of pathogens. Trends Immunol.26, 447–454.10.1016/j.it.2005.06.004Search in Google Scholar PubMed

Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell10, 417–426.10.1016/S1097-2765(02)00599-3Search in Google Scholar

Martinon, F., Agostini, L., Meylan, E., and Tschopp, J. (2004). Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol.14, 1929–1934.10.1016/j.cub.2004.10.027Search in Google Scholar

Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241.10.1038/nature04516Search in Google Scholar

Matzinger, P. (2002). The danger model: a renewed sense of self. Science296, 301–305.10.1126/science.1071059Search in Google Scholar

McDermott, M.F., Aganna, E., Hitman, G.A., Ogunkolade, B.W., Booth, D.R., and Hawkins, P.N. (2000). An autosomal dominant periodic fever associated with AA amyloidosis in a north Indian family maps to distal chromosome 1q. Arthritis Rheum.43, 2034–2040.10.1002/1529-0131(200009)43:9<2034::AID-ANR14>3.0.CO;2-JSearch in Google Scholar

Medzhitov, R. and Janeway, C. Jr. (2000). Innate immune recognition: mechanisms and pathways. Immunol. Rev.173, 89–97.10.1034/j.1600-065X.2000.917309.xSearch in Google Scholar

Micheau, O. and Tschopp, J. (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell114, 181–190.10.1016/S0092-8674(03)00521-XSearch in Google Scholar

Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D.W., Briand, C., and Grutter, M.G. (2002). The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem.277, 45162–45171.10.1074/jbc.M206882200Search in Google Scholar

Muppidi, J.R., Lobito, A.A., Ramaswamy, M., Yang, J.K., Wang, L., Wu, H., and Siegel, R.M. (2006). Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis. Cell Death Differ., in press; doi: 10.1038/sj.cdd.4401855.10.1038/sj.cdd.4401855Search in Google Scholar

Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvesen, G.S., and Dixit, V.M. (1998). An induced proximity model for caspase-8 activation. J. Biol. Chem.273, 2926–2930.10.1074/jbc.273.5.2926Search in Google Scholar

O'Connor, W. Jr., Harton, J.A., Zhu, X., Linhoff, M.W., and Ting, J.P. (2003). Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-κB suppressive properties. J. Immunol.171, 6329–6333.Search in Google Scholar

Ogura, Y., Inohara, N., Benito, A., Chen, F.F., Yamaoka, S., and Nunez, G. (2001). Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem.276, 4812–4818.10.1074/jbc.M008072200Search in Google Scholar PubMed

Olson, N.E., Graves, J.D., Shu, G.L., Ryan, E.J., and Clark, E.A. (2003). Caspase activity is required for stimulated B lymphocytes to enter the cell cycle. J. Immunol.170, 6065–6072.10.4049/jimmunol.170.12.6065Search in Google Scholar PubMed

Paroni, G., Henderson, C., Schneider, C., and Brancolini, C. (2001). Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J. Biol. Chem.276, 21907–21915.10.1074/jbc.M011565200Search in Google Scholar PubMed

Peter, M.E. (2004). The flip side of FLIP. Biochem. J.382, e1–3.10.1042/BJ20041143Search in Google Scholar PubMed PubMed Central

Peter, M.E. and Krammer, P.H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ.10, 26–35.10.1038/sj.cdd.4401186Search in Google Scholar PubMed

Poukkula, M., Kaunisto, A., Hietakangas, V., Denessiouk, K., Katajamaki, T., Johnson, M.S., Sistonen, L., and Eriksson, J.E. (2005). Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem.280, 27345–27355.10.1074/jbc.M504019200Search in Google Scholar PubMed

Qin, H., Srinivasula, S.M., Wu, G., Fernandes-Alnemri, T., Alnemri, E.S., and Shi, Y. (1999). Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature399, 549–557.10.1038/21124Search in Google Scholar PubMed

Read, S.H., Baliga, B.C., Ekert, P.G., Vaux, D.L., and Kumar, S. (2002). A novel Apaf-1-independent putative caspase-2 activation complex. J. Cell. Biol.159, 739–745.10.1083/jcb.200209004Search in Google Scholar PubMed PubMed Central

Ren, J., Shi, M., Liu, R., Yang, Q.H., Johnson, T., Skarnes, W.C., and Du, C. (2005). The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc. Natl. Acad. Sci. USA102, 565–570.10.1073/pnas.0408744102Search in Google Scholar PubMed PubMed Central

Riedl, S.J., Li, W., Chao, Y., Schwarzenbacher, R., and Shi, Y. (2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature434, 926–933.10.1038/nature03465Search in Google Scholar PubMed

Robertson, J.D., Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2000). Distinct pathways for stimulation of cytochrome c release by etoposide. J. Biol. Chem.275, 32438–32443.10.1074/jbc.C000518200Search in Google Scholar PubMed

Robertson, J.D., Enoksson, M., Suomela, M., Zhivotovsky, B., and Orrenius, S. (2002). Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J. Biol. Chem.277, 29803–29809.10.1074/jbc.M204185200Search in Google Scholar PubMed

Robertson, J.D., Gogvadze, V., Kropotov, A., Vakifahmetoglu, H., Zhivotovsky, B., and Orrenius, S. (2004). Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep.5, 643–648.10.1038/sj.embor.7400153Search in Google Scholar PubMed PubMed Central

Rodriguez, J. and Lazebnik, Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev.13, 3179–3184.10.1101/gad.13.24.3179Search in Google Scholar PubMed PubMed Central

Rothwell, N., Allan, S., and Toulmond, S. (1997). The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J. Clin. Invest.100, 2648–2652.10.1172/JCI119808Search in Google Scholar PubMed PubMed Central

Saleh, M., Vaillancourt, J.P., Graham, R.K., Huyck, M., Srinivasula, S.M., Alnemri, E.S., Steinberg, M.H., Nolan, V., Baldwin, C.T., Hotchkiss, R.S., et al. (2004). Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature429, 75–79.10.1038/nature02451Search in Google Scholar PubMed

Salvesen, G.S. and Dixit, V.M. (1999). Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA96, 10964–10967.10.1073/pnas.96.20.10964Search in Google Scholar PubMed PubMed Central

Samad, T.A., Moore, K.A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventre, J.V., and Woolf, C.J. (2001). Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature410, 471–475.10.1038/35068566Search in Google Scholar PubMed

Sato, T., Machida, T., Takahashi, S., Iyama, S., Sato, Y., Kuribayashi, K., Takada, K., Oku, T., Kawano, Y., Okamoto, T., et al. (2004). Fas-mediated apoptosome formation is dependent on reactive oxygen species derived from mitochondrial permeability transition in Jurkat cells. J. Immunol.173, 285–296.10.4049/jimmunol.173.1.285Search in Google Scholar PubMed

Scaffidi, C., Schmitz, I., Zha, J., Korsmeyer, S.J., Krammer, P.H., and Peter, M.E. (1999). Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem.274, 22532–22538.10.1074/jbc.274.32.22532Search in Google Scholar PubMed

Schneider-Brachert, W., Tchikov, V., Neumeyer, J., Jakob, M., Winoto-Morbach, S., Held-Feindt, J., Heinrich, M., Merkel, O., Ehrenschwender, M., Adam, D., et al. (2004). Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity21, 415–428.10.1016/j.immuni.2004.08.017Search in Google Scholar

Schwerk, C. and Schulze-Osthoff, K. (2003). Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem. Pharmacol.66, 1453–1458.10.1016/S0006-2952(03)00497-0Search in Google Scholar

Seth, R., Yang, C., Kaushal, V., Shah, S.V., and Kaushal, G.P. (2005). p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J. Biol. Chem.280, 31230–31239.10.1074/jbc.M503305200Search in Google Scholar

Shearwin-Whyatt, L.M., Harvey, N.L., and Kumar, S. (2000). Subcellular localization and CARD-dependent oligomerization of the death adaptor RAIDD. Cell Death Differ.7, 155–165.10.1038/sj.cdd.4400632Search in Google Scholar

Shin, S., Lee, Y., Kim, W., Ko, H., Choi, H., and Kim, K. (2005). Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J.24, 4209–4210.10.1038/sj.emboj.7600899Search in Google Scholar

Sprick, M.R., Weigand, M.A., Rieser, E., Rauch, C.T., Juo, P., Blenis, J., Krammer, P.H., and Walczak, H. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity12, 599–609.10.1016/S1074-7613(00)80211-3Search in Google Scholar

Stehlik, C., Fiorentino, L., Dorfleutner, A., Bruey, J.M., Ariza, E.M., Sagara, J., and Reed, J.C. (2002). The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor κB activation pathways. J. Exp. Med.196, 1605–1615.10.1084/jem.20021552Search in Google Scholar PubMed PubMed Central

Stehlik, C., Krajewska, M., Welsh, K., Krajewski, S., Godzik, A., and Reed, J.C. (2003a). The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-κB and pro-caspase-1 regulation. Biochem. J.373, 101–113.10.1042/bj20030304Search in Google Scholar

Stehlik, C., Lee, S.H., Dorfleutner, A., Stassinopoulos, A., Sagara, J., and Reed, J.C. (2003b). Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J. Immunol.171, 6154–6163.10.4049/jimmunol.171.11.6154Search in Google Scholar PubMed

Steller, H. (1995). Mechanisms and genes of cellular suicide. Science267, 1445–1449.10.1126/science.7878463Search in Google Scholar PubMed

Stennicke, H.R., Deveraux, Q.L., Humke, E.W., Reed, J.C., Dixit, V.M., and Salvesen, G.S. (1999). Caspase-9 can be activated without proteolytic processing. J. Biol. Chem.274, 8359–8362.10.1074/jbc.274.13.8359Search in Google Scholar

Su, H., Bidere, N., Zheng, L., Cubre, A., Sakai, K., Dale, J., Salmena, L., Hakem, R., Straus, S., and Lenardo, M. (2005). Requirement for caspase-8 in NF-κB activation by antigen receptor. Science307, 1465–1468.10.1126/science.1104765Search in Google Scholar

Thomas, L.R., Henson, A., Reed, J.C., Salsbury, F.R., and Thorburn, A. (2004). Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J. Biol. Chem.279, 32780–32785.10.1074/jbc.M401680200Search in Google Scholar

Thome, M. and Tschopp, J. (2001). Regulation of lymphocyte proliferation and death by FLIP. Nat. Rev. Immunol.1, 50–58.10.1038/35095508Search in Google Scholar

Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, C., Burns, K., Bodmer, J.L., Schroter, M., et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature386, 517–521.10.1038/386517a0Search in Google Scholar

Thorburn, A. (2004). Death receptor-induced cell killing. Cell Signal.16, 139–144.10.1016/j.cellsig.2003.08.007Search in Google Scholar

Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., et al. (1992). A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature356, 768–774.10.1038/356768a0Search in Google Scholar

Tinel, A. and Tschopp, J. (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science304, 843–846.10.1126/science.1095432Search in Google Scholar

Ting, J.P. and Davis, B.K. (2005). CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol.23, 387–414.10.1146/annurev.immunol.23.021704.115616Search in Google Scholar

Tschopp, J., Irmler, M., and Thome, M. (1998). Inhibition of fas death signals by FLIPs. Curr. Opin. Immunol.10, 552–558.10.1016/S0952-7915(98)80223-9Search in Google Scholar

Tu, S., McStay, G.P., Boucher, L.M., Mak, T., Beere, H.M., and Green, D.R. (2006). In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat. Cell Biol.8, 72–77.10.1038/ncb1340Search in Google Scholar

Ushio, S., Namba, M., Okura, T., Hattori, K., Nukada, Y., Akita, K., Tanabe, F., Konishi, K., Micallef, M., Fujii, M., et al. (1996). Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J. Immunol.156, 4274–4279.10.4049/jimmunol.156.11.4274Search in Google Scholar

Vanden Berghe, T., Van Loo, G., Saelens, X., Van Gurp, M., Brouckaert, G., Kalai, M., Declercq, W., and Vandenabeele, P. (2004). Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J. Biol. Chem.279, 7925–7933.10.1074/jbc.M307807200Search in Google Scholar

Weber, C.H. and Vincenz, C. (2001). The death domain superfamily: a tale of two interfaces? Trends Biochem. Sci.26, 475–481.Search in Google Scholar

Werner, A.B., Tait, S.W., De Vries, E., Eldering, E., and Borst, J. (2004). Requirement for aspartate-cleaved bid in apoptosis signaling by DNA-damaging anti-cancer regimens. J. Biol. Chem.279, 28771–28780.10.1074/jbc.M400268200Search in Google Scholar

Wiley, J.S., Gargett, C.E., Zhang, W., Snook, M.B., and Jamieson, G.P. (1998). Partial agonists and antagonists reveal a second permeability state of human lymphocyte P2Z/P2X7 channel. Am. J. Physiol.275, C1224–1231.Search in Google Scholar

Yamamoto, M., Yaginuma, K., Tsutsui, H., Sagara, J., Guan, X., Seki, E., Yasuda, K., Akira, S., Nakanishi, K., Noda, T., and Taniguchi, S. (2004). ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells9, 1055–1067.10.1111/j.1365-2443.2004.00789.xSearch in Google Scholar

Yang, J.K., Wang, L., Zheng, L., Wan, F., Ahmed, M., Lenardo, M.J., and Wu, H. (2005). Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol. Cell20, 939–949.10.1016/j.molcel.2005.10.023Search in Google Scholar

Yoo, N.J., Park, W.S., Kim, S.Y., Reed, J.C., Son, S.G., Lee, J.Y., and Lee, S.H. (2002). Nod1, a CARD protein, enhances pro-interleukin-1β processing through the interaction with pro-caspase-1. Biochem. Biophys. Res. Commun.299, 652–658.10.1016/S0006-291X(02)02714-6Search in Google Scholar

Yu, X., Acehan, D., Menetret, J.F., Booth, C.R., Ludtke, S.J., Riedl, S.J., Shi, Y., Wang, X., and Akey, C.W. (2005). A structure of the human apoptosome at 12.8 Å resolution provides insights into this cell death platform. Structure (Camb.)13, 1725–1735.Search in Google Scholar

Zhang, N. and He, Y.W. (2005). An essential role for c-FLIP in the efficient development of mature T lymphocytes. J. Exp. Med.202, 395–404.10.1084/jem.20050117Search in Google Scholar PubMed PubMed Central

Zhivotovsky, B., Orrenius, S., Brustugun, O.T., and Doskeland, S.O. (1998). Injected cytochrome c induces apoptosis. Nature391, 449–450.10.1038/35060Search in Google Scholar PubMed

Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell90, 405–413.Search in Google Scholar

Published Online: 2006-08-09
Published in Print: 2006-08-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.124/html
Scroll to top button