Selenium in mammalian spermiogenesis : Biological Chemistry Jump to ContentJump to Main Navigation
Show Summary Details

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred


SCImago Journal Rank (SJR) 2015: 1.607
Source Normalized Impact per Paper (SNIP) 2015: 0.751
Impact per Publication (IPP) 2015: 2.609

249,00 € / $374.00 / £187.00*

Online
ISSN
1437-4315
See all formats and pricing

 


 
 

Select Volume and Issue
Loading journal volume and issue information...

30,00 € / $42.00 / £23.00

Get Access to Full Text

Selenium in mammalian spermiogenesis

Leopold Flohé1

1Molisa GmbH, Brenneckestraße 20, D-39118 Magdeburg, Germany

Citation Information: Biological Chemistry. Volume 388, Issue 10, Pages 987–995, ISSN (Online) 14374315, ISSN (Print) 14316730, DOI: 10.1515/BC.2007.112, October 2007

Publication History

Published Online:
2007-10-16

Abstract

The role of selenium in male fertility is reviewed with special emphasis on selenoprotein P and phospholipid hydroperoxide glutathione peroxidase (GPx4) in spermiogenesis. Inverse genetics reveal that selenoprotein P is required for selenium supply to the testis. GPx4 is abundantly synthesized in spermatids. As a moonlighting protein it is transformed in the later stages of spermiogenesis from an active selenoperoxidase into a structural protein that becomes a constituent of the mitochondrial sheath of spermatozoa. The transformation is paralleled by loss of glutathione. Mechanistically, the process is an alternate substrate inactivation of GPx4 resulting from reactions of its selenenic form with thiols of GPx4 itself and other proteins. Circumstantial evidence and ongoing experimental genetics indicate that the mitochondrially expressed form of the GPx4 gene is the most relevant one in spermiogenesis, with the nuclear form being dispensable for fertility and the role of cytosolic GPx4 remaining unclear. Clinical data reveal a strong association of low sperm GPx4 with infertility. Thus, impaired GPx4 biosynthesis, due to selenium deficiency or to genetic defects in gpx4 itself or in proteins involved in Se distribution and selenoprotein biosynthesis, causes male infertility, but can also be an epiphenomenon due to any perturbation of testicular function.

Keywords: male fertility; moonlighting protein; phospholipid hydroperoxide glutathione peroxidase (GPx4); selenium; selenoproteins; spermatogenesis

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
G. Mintziori, M. Kita, L. Duntas, and D. G. Goulis
Journal of Endocrinological Investigation, 2016
[2]
Ki Youn Jung, Jung-Min Yon, Chunmei Lin, A Young Jung, Jong Geol Lee, In-Jeoung Baek, Beom Jun Lee, Young Won Yun, and Sang-Yoon Nam
Reproductive Toxicology, 2015
[3]
Jeyoung Bang, Jang Hoe Huh, Ji-Woon Na, Qiao Lu, Bradley A. Carlson, Ryuta Tobe, Petra A. Tsuji, Vadim N. Gladyshev, Dolph L. Hatfield, and Byeong Jae Lee
Molecules and Cells, 2015, Volume 38, Number 5, Page 457
[4]
Marco Roman, Petru Jitaru, and Carlo Barbante
Metallomics, 2014, Volume 6, Number 1, Page 25
[6]
Jeyoung Bang, Mihyun Jang, Jang Hoe Huh, Ji-Woon Na, Myoungsup Shim, Bradley A. Carlson, Ryuta Tobe, Petra A. Tsuji, Vadim N. Gladyshev, Dolph L. Hatfield, and Byeong Jae Lee
Biochemical and Biophysical Research Communications, 2015, Volume 456, Number 4, Page 884
[7]
Leonidas H. Duntas and Salvatore Benvenga
Endocrine, 2015, Volume 48, Number 3, Page 756
[8]
Claire M. Weekley, Jade B. Aitken, Paul K. Witting, and Hugh H. Harris
Metallomics, 2014, Volume 6, Number 12, Page 2193
[9]
Guohai Sun, Min Jiang, Tao Zhou, Yueshuai Guo, Yiqiang Cui, Xuejiang Guo, and Jiahao Sha
Journal of Proteomics, 2014, Volume 109, Page 199
[10]
Cristian O’Flaherty
Advances in Andrology, 2014, Volume 2014, Page 1
[11]
Mustafa Eroglu, Sadik Sahin, Birol Durukan, Ozlem Bingol Ozakpinar, Nese Erdinc, Lale Turkgeldi, Kenan Sofuoglu, and Ates Karateke
Biological Trace Element Research, 2014, Volume 159, Number 1-3, Page 46
[12]
U. Ahsan, Z. Kamran, I. Raza, S. Ahmad, W. Babar, M.H. Riaz, and Z. Iqbal
Animal Reproduction Science, 2014, Volume 146, Number 1-2, Page 55
[13]
Marten Michaelis, Oliver Gralla, Thomas Behrends, Marcus Scharpf, Tobias Endermann, Eddy Rijntjes, Nicole Pietschmann, Birgit Hollenbach, and Lutz Schomburg
Biochemical and Biophysical Research Communications, 2014, Volume 443, Number 3, Page 905
[14]
Satoshi Tsunoda, Naoko Kimura, and Junichi Fujii
Reproductive Medicine and Biology, 2014, Volume 13, Number 2, Page 71
[15]
Lei Zhang, Zhan-qin Zhou, Guang Li, and Ming-zhe Fu
Biological Trace Element Research, 2013, Volume 156, Number 1-3, Page 111
[16]
Mohammad Amin Rezvanfar, Mohammad Ali Rezvanfar, Ahmad Reza Shahverdi, Abbas Ahmadi, Maryam Baeeri, Azadeh Mohammadirad, and Mohammad Abdollahi
Toxicology and Applied Pharmacology, 2013, Volume 266, Number 3, Page 356
[17]
Regina Brigelius-Flohé and Anna Patricia Kipp
Annals of the New York Academy of Sciences, 2012, Volume 1259, Number 1, Page 19
[18]
C. Clément, U. Witschi, and M. Kreuzer
Animal Reproduction Science, 2012, Volume 132, Number 1-2, Page 1
[19]
Pinar Erkekoglu, N. Dilara Zeybek, Belma Giray, Esin Asan, and Filiz Hincal
Archives of Environmental Contamination and Toxicology, 2012, Volume 62, Number 3, Page 539
[20]
Lynnette R. Ferguson, Nishi Karunasinghe, Shuotun Zhu, and Alice H. Wang
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2012, Volume 733, Number 1-2, Page 100
[21]
Hiten D. Mistry, Fiona Broughton Pipkin, Christopher W.G. Redman, and Lucilla Poston
American Journal of Obstetrics and Gynecology, 2012, Volume 206, Number 1, Page 21
[22]
Mikalai Malinouski, Sebastian Kehr, Lydia Finney, Stefan Vogt, Bradley A. Carlson, Javier Seravalli, Richard Jin, Diane E. Handy, Thomas J. Park, Joseph Loscalzo, Dolph L. Hatfield, and Vadim N. Gladyshev
Antioxidants & Redox Signaling, 2012, Volume 16, Number 3, Page 185
[23]
Kwang Lee, Myoung Shim, Jin Kim, Hee Jung, Eunji Lee, Bradley A Carlson, Xue-Ming Xu, Jin Park, Dolph L Hatfield, Taesung Park, and Byeong Lee
BMC Genomics, 2011, Volume 12, Number 1, Page 426
[24]
Chih-Hung Guo, Guoo-Shyng W. Hsu, Chia-Ju Chuang, and Pei-Chung Chen
Environmental Toxicology and Pharmacology, 2009, Volume 27, Number 2, Page 176
[25]
Carolin S. Hoefig, Kostja Renko, Josef Köhrle, Marc Birringer, and Lutz Schomburg
The Journal of Nutritional Biochemistry, 2011, Volume 22, Number 10, Page 945
[26]
Imed Messaoudi, Mohamed Banni, Lamia Saïd, Khaled Saïd, and Abdelhamid Kerkeni
Chemico-Biological Interactions, 2010, Volume 188, Number 1, Page 94
[27]
Pınar Erkekoglu, N. Dilara Zeybek, Belma Giray, Esin Asan, Josiane Arnaud, and Filiz Hincal
Drug and Chemical Toxicology, 2011, Volume 34, Number 4, Page 379
[28]
Jin Young Kim, Kwang Hee Lee, Myoung Sup Shim, Hyein Shin, Xue-Ming Xu, Bradley A. Carlson, Dolph L. Hatfield, and Byeong Jae Lee
Biochemical and Biophysical Research Communications, 2010, Volume 397, Number 1, Page 53
[29]
Regina Brigelius-Flohé and Leopold Flohé
Antioxidants & Redox Signaling, 2011, Volume 15, Number 8, Page 2335
[31]
Stefano Toppo, Leopold Flohé, Fulvio Ursini, Stefano Vanin, and Matilde Maiorino
Biochimica et Biophysica Acta (BBA) - General Subjects, 2009, Volume 1790, Number 11, Page 1486
[32]
Leopold Flohé, Stefano Toppo, Giorgio Cozza, and Fulvio Ursini
Antioxidants & Redox Signaling, 2011, Volume 15, Number 3, Page 763
[33]
Marcus Conrad and Ulrich Schweizer
Antioxidants & Redox Signaling, 2010, Volume 12, Number 7, Page 851
[34]
Krystyna Patora-Komisarska, Dominika Jadwiga Podwysocka, and Dieter Seebach
Helvetica Chimica Acta, 2011, Volume 94, Number 1, Page 1
[35]
Erik Schoenmakers, Maura Agostini, Catherine Mitchell, Nadia Schoenmakers, Laura Papp, Odelia Rajanayagam, Raja Padidela, Lourdes Ceron-Gutierrez, Rainer Doffinger, Claudia Prevosto, Jian’an Luan, Sergio Montano, Jun Lu, Mireille Castanet, Nick Clemons, Matthijs Groeneveld, Perrine Castets, Mahsa Karbaschi, Sri Aitken, Adrian Dixon, Jane Williams, Irene Campi, Margaret Blount, Hannah Burton, Francesco Muntoni, Dominic O’Donovan, Andrew Dean, Anne Warren, Charlotte Brierley, David Baguley, Pascale Guicheney, Rebecca Fitzgerald, Alasdair Coles, Hill Gaston, Pamela Todd, Arne Holmgren, Kum Kum Khanna, Marcus Cooke, Robert Semple, David Halsall, Nicholas Wareham, John Schwabe, Lucia Grasso, Paolo Beck-Peccoz, Arthur Ogunko, Mehul Dattani, Mark Gurnell, and Krishna Chatterjee
Journal of Clinical Investigation, 2010, Volume 120, Number 12, Page 4220
[36]
V. I. Kulinsky and L. S. Kolesnichenko
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, Volume 4, Number 3, Page 224
[37]
János Szöllősi, Zoltán Závaczki, and Attila Pál
Orvosi Hetilap, 2008, Volume 149, Number 37, Page 1749
[38]
Yalcin Kocaogullar, Kemal Ilik, Hasan Esen, Osman Koc, and Onder Guney
Journal of Neurosurgical Anesthesiology, 2010, Volume 22, Number 1, Page 53
[39]
M. A. Reeves and P. R. Hoffmann
Cellular and Molecular Life Sciences, 2009, Volume 66, Number 15, Page 2457
[40]
Ryuta TOBE, Hisaaki MIHARA, Tatsuo KURIHARA, and Nobuyoshi ESAKI
Bioscience, Biotechnology and Biochemistry, 2009, Volume 73, Number 5, Page 1230
[41]
Harsharn GILL and Glen WALKER
Nutrition & Dietetics, 2008, Volume 65, Page S41
[42]
R. V. Ramamoorthi, M. G. Rossano, N. Paneth, J. C. Gardiner, M. P. Diamond, E. Puscheck, D. C. Daly, R. C. Potter, and J. J. Wirth
Statistics in Medicine, 2008, Volume 27, Number 18, Page 3503
[43]
Margaret P. Rayman
British Journal of Nutrition, 2008, Volume 100, Number 02
[44]
Regina Brigelius-Flohé
Chemistry & Biodiversity, 2008, Volume 5, Number 3, Page 389

Comments (0)

Please log in or register to comment.