Jump to ContentJump to Main Navigation

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR increased in 2014: 3.268
Rank 106 out of 289 in category Biochemistry & Molecular Biology in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.596
Source Normalized Impact per Paper (SNIP) 2014: 0.845
Impact per Publication (IPP) 2014: 2.992

VolumeIssuePage

Issues

Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1

Michael Filser1 / Marcelo A. Comini2 / Maria M. Molina-Navarro3 / Natalie Dirdjaja4 / Enrique Herrero5 / R. Luise Krauth-Siegel6

1Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany

2Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany

3Departament de Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Monserrat Roig 2, E-25008 Lleida, Spain

4Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany

5Departament de Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Monserrat Roig 2, E-25008 Lleida, Spain

6Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany

Corresponding author

Citation Information: Biological Chemistry. Volume 389, Issue 1, Pages 21–32, ISSN (Online) 14374315, ISSN (Print) 14316730, DOI: 10.1515/BC.2007.147, December 2007

Publication History

Received:
2007-06-18
Accepted:
2007-07-22
Published Online:
2007-12-20

Abstract

African trypanosomes encode three monothiol glutaredoxins (1-C-Grx1 to 3). 1-C-Grx1 has a putative CAYS active site and Cys181 as single additional cysteine. The recombinant protein forms non-covalent homodimers. As observed for other monothiol glutaredoxins, Trypanosoma brucei 1-C-Grx1 was not active in the glutaredoxin assay with hydroxyethyl disulfide and glutathione nor catalyzed the reduction of insulin disulfide. In addition, it lacked peroxidase activity and did not catalyze protein (de)glutathionylation. Upon oxidation, 1-C-Grx1 forms an intramolecular disulfide bridge and, to a minor degree, covalent dimers. Both disulfide forms are reduced by the parasite trypanothione/tryparedoxin system. 1-C-Grx1 shows mitochondrial localization. The total cellular concentration is at least 5 μm. Thus, 1-C-Grx1 is an abundant protein especially in the rudimentary organelle of the mammalian form of the parasite. Expression of 1-C-Grx1 in Grx5-deficient yeast cells with its authentic presequence targeted the protein to the mitochondria and partially restored the growth phenotype and aconitase activity of the mutant, and conferred resistance against hydroperoxides and diamide. The parasite Grx2 and 3 failed to substitute for Grx5. This is surprising because even bacterial and plant 1-Cys-glutaredoxins efficiently revert the defects, and may be due to the lack of two basic residues conserved in all but the trypanosomatid proteins.

Keywords: monothiol glutaredoxin; thiol metabolism; Trypanosoma; trypanothione; tryparedoxin; yeast

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Patricia Begas, Verena Staudacher, and Marcel Deponte
Chem. Sci., 2015, Volume 6, Number 7, Page 3788
[2]
Julius Lukeš and Somsuvro Basu
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2015, Volume 1853, Number 6, Page 1481
[3]
Mattia Sturlese, Moreno Lelli, Bruno Manta, Stefano Mammi, Marcelo A. Comini, and Massimo Bellanda
Biomolecular NMR Assignments, 2015, Volume 9, Number 1, Page 143
[4]
Diego G. Arias, Vanina E. Marquez, María L. Chiribao, Fernanda R. Gadelha, Carlos Robello, Alberto A. Iglesias, and Sergio A. Guerrero
Free Radical Biology and Medicine, 2013, Volume 63, Page 65
[5]
Eva-Maria Hanschmann, José Rodrigo Godoy, Carsten Berndt, Christoph Hudemann, and Christopher Horst Lillig
Antioxidants & Redox Signaling, 2013, Volume 19, Number 13, Page 1539
[6]
Bruno Manta, Carlo Pavan, Mattia Sturlese, Andrea Medeiros, Martina Crispo, Carsten Berndt, R. Luise Krauth-Siegel, Massimo Bellanda, and Marcelo A. Comini
Antioxidants & Redox Signaling, 2013, Volume 19, Number 7, Page 665
[7]
Bruno Manta, Marcelo Comini, Andrea Medeiros, Martín Hugo, Madia Trujillo, and Rafael Radi
Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, Volume 1830, Number 5, Page 3199
[8]
Florencia Sardi, Bruno Manta, Stephanie Portillo-Ledesma, Bernard Knoops, Marcelo A. Comini, and Gerardo Ferrer-Sueta
Analytical Biochemistry, 2013, Volume 435, Number 1, Page 74
[9]
Koen Van Laer, Chris J. Hamilton, and Joris Messens
Antioxidants & Redox Signaling, 2013, Volume 18, Number 13, Page 1642
[10]
Ana M. Tomás and Helena Castro
Antioxidants & Redox Signaling, 2013, Volume 19, Number 7, Page 696
[11]
Marcelo A. Comini, R. Luise Krauth-Siegel, and Massimo Bellanda
Antioxidants & Redox Signaling, 2013, Volume 19, Number 7, Page 708
[12]
R. Luise Krauth-Siegel and Alejandro E. Leroux
Antioxidants & Redox Signaling, 2012, Volume 17, Number 4, Page 583
[13]
R. Luise Krauth-Siegel and Marcelo A. Comini
Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, Volume 1780, Number 11, Page 1236
[14]
Vanina E. Marquez, Diego G. Arias, Claudia V. Piattoni, Carlos Robello, Alberto A. Iglesias, and Sergio A. Guerrero
Antioxidants & Redox Signaling, 2010, Volume 12, Number 6, Page 787
[15]
Lenong Li, Ninghui Cheng, Kendal D. Hirschi, and Xiaoqiang Wang
Acta Crystallographica Section D Biological Crystallography, 2010, Volume 66, Number 6, Page 725

Comments (0)

Please log in or register to comment.