Jump to ContentJump to Main Navigation
Show Summary Details

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred


SCImago Journal Rank (SJR) 2015: 1.607
Source Normalized Impact per Paper (SNIP) 2015: 0.751
Impact per Publication (IPP) 2015: 2.609

249,00 € / $374.00 / £187.00*

Online
ISSN
1437-4315
See all formats and pricing

 


 
 

Select Volume and Issue
Loading journal volume and issue information...

30,00 € / $42.00 / £23.00

Get Access to Full Text

The histone H1 family: specific members, specific functions?

Annalisa Izzo1 / Kinga Kamieniarz2 / Robert Schneider3

1Max Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany

2Max Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany

3Max Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany

Corresponding author

Citation Information: Biological Chemistry. Volume 389, Issue 4, Pages 333–343, ISSN (Online) 14374315, ISSN (Print) 14316730, DOI: 10.1515/BC.2008.037, March 2008

Publication History

Published Online:
2008-03-27

Abstract

The linker histone H1 binds to the DNA entering and exiting the nucleosomal core particle and has an important role in establishing and maintaining higher order chromatin structures. H1 forms a complex family of related proteins with distinct species, tissue and developmental specificity. In higher eukaryotes all H1 variants have the same general structure, consisting of a central conserved globular domain and less conserved N-terminal and C-terminal tails. These tails are moderately conserved among species, but differ among variants, suggesting a specific function for each H1 variant. Due to compensatory mechanisms and to the lack of proper tools, it has been very difficult to study the biological role of individual variants in chromatin-mediated processes. Our knowledge about H1 variants is indeed limited, and in vitro and in vivo observations have often been contradictory. Therefore, H1 variants were considered to be functionally redundant. However, recent knockout studies and biochemical analyses in different organisms have revealed exciting new insights into the specificity and mechanisms of actions of the H1 family members. Here, we collect and compare the available literature about H1 variants and discuss possible specific roles that challenge the concept of H1 being a mere structural component of chromatin and a general repressor of transcription.

Keywords: chromatin; gene expression; histone H1; variants

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gerald Soslau, Phillip J. Prest, Reiner Class, Monika Jost, and Lynn Mathews
Platelets, 2009, Volume 20, Number 5, Page 349
[2]
Shibojyoti Lahiri, Na Sun, Victor Solis-Mezarino, Andreas Fedisch, Jovica Ninkovic, Annette Feuchtinger, Magdalena Götz, Axel Walch, and Axel Imhof
PROTEOMICS, 2016, Volume 16, Number 3, Page 437
[3]
Alison E. White, Aaron R. Hieb, and Karolin Luger
Scientific Reports, 2016, Volume 6, Page 19122
[4]
Geert Geeven, Yun Zhu, Byung Ju Kim, Boris A. Bartholdy, Seung-Min Yang, Todd S. Macfarlan, Wesley D. Gifford, Samuel L. Pfaff, Marjon J. A. M. Verstegen, Hugo Pinto, Marit W. Vermunt, Menno P. Creyghton, Patrick J. Wijchers, John A. Stamatoyannopoulos, Arthur I. Skoultchi, and Wouter de Laat
Genome Biology, 2015, Volume 16, Number 1
[5]
Chenyi Pan and Yuhong Fan
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2015
[6]
Ruiqi Liao and Craig A. Mizzen
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2015
[7]
Zhongrun Qian, Qi Shen, Xi Yang, Yongming Qiu, and Wenbin Zhang
BioMed Research International, 2015, Volume 2015, Page 1
[8]
Aleix Bayona-Feliu, Anna Casas-Lamesa, Albert Carbonell, Paula Climent-Cantó, Milos Tatarski, Salvador Pérez-Montero, Fernando Azorín, and Jordi Bernués
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2015
[9]
X. Zheng, Y. Kim, and Y. Zheng
Molecular Biology of the Cell, 2015, Volume 26, Number 14, Page 2685
[10]
Andrzej Kowalski and Jan Pałyga
Cell Biology International, 2012, Volume 36, Number 11, Page 981
[12]
Heather J. Szerlong, Jacob A. Herman, Christine M. Krause, Jennifer G. DeLuca, Arthur Skoultchi, Quinton A. Winger, Jessica E. Prenni, and Jeffrey C. Hansen
Journal of Molecular Biology, 2015, Volume 427, Number 11, Page 2056
[13]
Brian D. Larsen and Lynn A. Megeney
Cell Cycle, 2010, Volume 9, Number 15, Page 3012
[14]
Anne C. Solga, Winnie W. Pong, Jason Walker, Todd Wylie, Vincent Magrini, Anthony J. Apicelli, Malachi Griffith, Obi L. Griffith, Shinichi Kohsaka, Gregory F. Wu, David L. Brody, Elaine R. Mardis, and David H. Gutmann
Glia, 2015, Volume 63, Number 4, Page 531
[15]
Ana C. Pena, Mafalda R. Pimentel, Helena Manso, Rita Vaz-Drago, Daniel Pinto-Neves, Francisco Aresta-Branco, Filipa Rijo-Ferreira, Fabien Guegan, Luis Pedro Coelho, Maria Carmo-Fonseca, Nuno L. Barbosa-Morais, and Luisa M. Figueiredo
Molecular Microbiology, 2014, Volume 93, Number 4, Page 645
[16]
Vadim Khachaturov, Guang-Qian Xiao, Yayoi Kinoshita, Pamela D. Unger, and David E. Burstein
Human Pathology, 2014, Volume 45, Number 10, Page 2115
[17]
Jean-Michel Terme, Lluís Millán-Ariño, Regina Mayor, Neus Luque, Andrea Izquierdo-Bouldstridge, Alberto Bustillos, Cristina Sampaio, Jordi Canes, Isaura Font, Núria Sima, Mónica Sancho, Laura Torrente, Sonia Forcales, Alicia Roque, Pere Suau, and Albert Jordan
FEBS Letters, 2014, Volume 588, Number 14, Page 2353
[18]
Burcu Biterge and Robert Schneider
Cell and Tissue Research, 2014, Volume 356, Number 3, Page 457
[19]
Ewa Górnicka-Michalska, Andrzej Kowalski, and Jan Pałyga
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 1
[20]
Benjamin S. Freedman and Rebecca Heald
Current Biology, 2010, Volume 20, Number 11, Page 1048
[21]
Wenjun Wang, Ruiqi Cai, Hongdou Xiao, and Ling Zheng
Wuhan University Journal of Natural Sciences, 2014, Volume 19, Number 1, Page 8
[22]
Weiguo Han, Miao Shi, and Simon D Spivack
Epigenetics, 2013, Volume 8, Number 11, Page 1176
[23]
Salvador Pérez-Montero, Albert Carbonell, Tomás Morán, Alejandro Vaquero, and Fernando Azorín
Developmental Cell, 2013, Volume 26, Number 6, Page 578
[25]
S. W. Harshman, N. L. Young, M. R. Parthun, and M. A. Freitas
Nucleic Acids Research, 2013, Volume 41, Number 21, Page 9593
[26]
Annalisa Izzo, Kinga Kamieniarz-Gdula, Fidel Ramírez, Nighat Noureen, Jop Kind, Thomas Manke, Bas van Steensel, and Robert Schneider
Cell Reports, 2013, Volume 3, Number 6, Page 2142
[27]
S.-M. Yang, B. J. Kim, L. Norwood Toro, and A. I. Skoultchi
Proceedings of the National Academy of Sciences, 2013, Volume 110, Number 5, Page 1708
[28]
Diana A Stolfa, Oliver Einsle, Wolfgang Sippl, and Manfred Jung
Future Medicinal Chemistry, 2012, Volume 4, Number 16, Page 2029
[29]
T. Ordog, S. A. Syed, Y. Hayashi, and D. T. Asuzu
Neurogastroenterology & Motility, 2012, Volume 24, Number 12, Page 1054
[30]
Olga O. Zaytseva, Vera S. Bogdanova, and Oleg E. Kosterin
Gene, 2012, Volume 504, Number 2, Page 192
[31]
J. G. Lohr, P. Stojanov, M. S. Lawrence, D. Auclair, B. Chapuy, C. Sougnez, P. Cruz-Gordillo, B. Knoechel, Y. W. Asmann, S. L. Slager, A. J. Novak, A. Dogan, S. M. Ansell, B. K. Link, L. Zou, J. Gould, G. Saksena, N. Stransky, C. Rangel-Escareno, J. C. Fernandez-Lopez, A. Hidalgo-Miranda, J. Melendez-Zajgla, E. Hernandez-Lemus, A. Schwarz-Cruz y Celis, I. Imaz-Rosshandler, A. I. Ojesina, J. Jung, C. S. Pedamallu, E. S. Lander, T. M. Habermann, J. R. Cerhan, M. A. Shipp, G. Getz, and T. R. Golub
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 10, Page 3879
[32]
Jun-ning Wang, Jian-fei Kuang, Wei Shan, Jiao Chen, Hui Xie, Wang-jin Lu, Jian-wen Chen, and Jian-ye Chen
Plant Cell Reports, 2012, Volume 31, Number 8, Page 1485
[33]
Aurore Gallot, Shuji Shigenobu, Tomomi Hashiyama, Stéphanie Jaubert-Possamai, and Denis Tagu
BMC Genomics, 2012, Volume 13, Number 1, Page 76
[34]
A. R. Hieb, S. D'Arcy, M. A. Kramer, A. E. White, and K. Luger
Nucleic Acids Research, 2012, Volume 40, Number 5, Page e33
[35]
Christine Öberg and Sergey Belikov
Biochemical and Biophysical Research Communications, 2012, Volume 420, Number 2, Page 321
[36]
Tatiana N. Bocharova, Elena A. Smirnova, and Alexander A. Volodin
Biopolymers, 2012, Volume 97, Number 4, Page 229
[37]
K Kim, K W Jeong, H Kim, J Choi, W Lu, M R Stallcup, and W An
Oncogene, 2012, Volume 31, Number 39, Page 4290
[38]
Andrzej Kowalski, Jan Pałyga, and Ewa Górnicka-Michalska
Comptes Rendus Biologies, 2011, Volume 334, Number 1, Page 6
[39]
Florian Heyd and Kristen W. Lynch
Biochemical and Biophysical Research Communications, 2011, Volume 414, Number 4, Page 743
[40]
Jimmy Long Huynh and Patrizia Casaccia
Neurobiology of Disease, 2010, Volume 39, Number 1, Page 47
[42]
Nicole Happel and Detlef Doenecke
Gene, 2009, Volume 431, Number 1-2, Page 1
[43]
Anna Gréen, Bettina Sarg, Henrik Gréen, Anita Lönn, Herbert H Lindner, and Ingemar Rundquist
Epigenetics & Chromatin, 2011, Volume 4, Number 1, Page 15
[44]
Nicole Happel, Stefan Stoldt, Bernhard Schmidt, and Detlef Doenecke
Journal of Molecular Biology, 2009, Volume 386, Number 2, Page 339
[45]
Sebla B. Kutluay and Steven J. Triezenberg
Biochimica et Biophysica Acta (BBA) - General Subjects, 2009, Volume 1790, Number 6, Page 456
[46]
Anna M. Arnaudo, Rosalynn C. Molden, and Benjamin A. Garcia
Critical Reviews in Biochemistry and Molecular Biology, 2011, Volume 46, Number 4, Page 284
[47]
Anthony J. De Lucca, Lars-Olof Hedén, Bruce Ingber, and Deepak Bhatnagar
Journal of Agricultural and Food Chemistry, 2011, Volume 59, Number 13, Page 6933
[48]
T. N. Bocharova, N. P. Kvitko, E. A. Smirnova, and A. A. Volodin
Molecular Biology, 2011, Volume 45, Number 2, Page 343
[49]
Shrikanth S. Gadad, Parijat Senapati, Sajad Hussain Syed, Roshan Elizabeth Rajan, Jayasha Shandilya, Venkatesh Swaminathan, Snehajyoti Chatterjee, Emanuela Colombo, Stefan Dimitrov, Pier Giuseppe Pelicci, Udaykumar Ranga, and Tapas K. Kundu
Biochemistry, 2011, Volume 50, Number 14, Page 2780
[50]
Li Yang, Michael O Duff, Brenton R Graveley, Gordon G Carmichael, and Ling-Ling Chen
Genome Biology, 2011, Volume 12, Number 2, Page R16
[51]
Rocío Melissa Rivera
Systems Biology in Reproductive Medicine, 2010, Volume 56, Number 5, Page 388
[52]
Verena K. Maier, Mariacristina Chioda, and Peter B. Becker
Biological Chemistry, 2008, Volume 389, Number 4
[53]
M Chioda and P B Becker
Heredity, 2010, Volume 105, Number 1, Page 71
[54]
Steven J McBryant, Xu Lu, and Jeffrey C Hansen
Cell Research, 2010, Volume 20, Number 5, Page 519
[55]
Rainer Kalamajka, Christine Finnie, and Klaus D. Grasser
Planta, 2010, Volume 231, Number 5, Page 1127
[56]
JONG-MYONG KIM, TAIKO K. TO, TATSUYA NISHIOKA, and MOTOAKI SEKI
Plant, Cell & Environment, 2010, Volume 33, Number 4, Page 604
[57]
Jean-Philippe Lambert, Kristin Baetz, and Daniel Figeys
Mol. BioSyst., 2009, Volume 6, Number 1, Page 30
[58]
Christopher Wood, Ambrosius Snijders, James Williamson, Colin Reynolds, John Baldwin, and Mark Dickman
FEBS Journal, 2009, Volume 276, Number 14, Page 3685
[59]
Robert H. Cichewicz
Nat. Prod. Rep., 2010, Volume 27, Number 1, Page 11
[60]
S. Orthaus, K. Klement, N. Happel, C. Hoischen, and S. Diekmann
Nucleic Acids Research, 2009, Volume 37, Number 10, Page 3391
[61]
Andrew Routh, Sara Sandin, and Daniela Rhodes
Proceedings of the National Academy of Sciences, 2008, Volume 105, Number 26, Page 8872

Comments (0)

Please log in or register to comment.