Jump to ContentJump to Main Navigation
Show Summary Details

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

SCImago Journal Rank (SJR) 2015: 1.607
Source Normalized Impact per Paper (SNIP) 2015: 0.751
Impact per Publication (IPP) 2015: 2.609

249,00 € / $374.00 / £187.00*

See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

30,00 € / $42.00 / £23.00

Get Access to Full Text

The mechanism of ATP-dependent RNA unwinding by DEAD box proteins

Manuel Hilbert1 / Anne R. Karow1 / Dagmar Klostermeier1

1Biozentrum, Biophysical Chemistry, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland

Corresponding author

Citation Information: Biological Chemistry. Volume 390, Issue 12, Pages 1237–1250, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: 10.1515/BC.2009.135, September 2009

Publication History

Published Online:


DEAD box proteins catalyze the ATP-dependent unwinding of double-stranded RNA (dsRNA). In addition, they facilitate protein displacement and remodeling of RNA or RNA/protein complexes. Their hallmark feature is local destabilization of RNA duplexes. Here, we summarize current data on the DEAD box protein mechanism and present a model for RNA unwinding that integrates recent data on the effect of ATP analogs and mutations on DEAD box protein activity. DEAD box proteins share a conserved helicase core with two flexibly linked RecA-like domains that contain all helicase signature motifs. Variable flanking regions contribute to substrate binding and modulate activity. In the presence of ATP and RNA, the helicase core adopts a compact, closed conformation with extensive interdomain contacts and high affinity for RNA. In the closed conformation, the RecA-like domains form a catalytic site for ATP hydrolysis and a continuous RNA binding site. A kink in the backbone of the bound RNA locally destabilizes the duplex. Rearrangement of this initial complex generates a hydrolysis- and unwinding-competent state. From this complex, the first RNA strand can dissociate. After ATP hydrolysis and phosphate release, the DEAD box protein returns to a low-affinity state for RNA. Dissociation of the second RNA strand and reopening of the cleft in the helicase core allow for further catalytic cycles.

Keywords: ATP hydrolysis; conformational changes; coupling; helicase; protein dynamics; RNA duplex destabilization

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rick Russell
Journal of Molecular Biology, 2015, Volume 427, Number 9, Page 1797
J. N. Kellner, J. Reinstein, and A. Meinhart
Nucleic Acids Research, 2015, Volume 43, Number 5, Page 2813
Fulvia Bono and Niels H. Gehring
RNA Biology, 2011, Volume 8, Number 1, Page 24
I. Jarmoskaite, H. Bhaskaran, S. Seifert, and R. Russell
Proceedings of the National Academy of Sciences, 2014, Volume 111, Number 29, Page E2928
Sina Möhlmann, Rebecca Mathew, Piotr Neumann, Andreas Schmitt, Reinhard Lührmann, and Ralf Ficner
Acta Crystallographica Section D Biological Crystallography, 2014, Volume 70, Number 6, Page 1622
Inga Jarmoskaite and Rick Russell
Annual Review of Biochemistry, 2014, Volume 83, Number 1, Page 697
U. Harms, A. Z. Andreou, A. Gubaev, and D. Klostermeier
Nucleic Acids Research, 2014, Volume 42, Number 12, Page 7911
David C Rawling and Anna Marie Pyle
Current Opinion in Structural Biology, 2014, Volume 25, Page 25
Alexandra Z. Andreou and Dagmar Klostermeier
RNA Biology, 2013, Volume 10, Number 1, Page 19
Yuan Zhang, Mirkó Palla, Andrew Sun, and Jung-Chi Liao
Journal of Physics: Condensed Matter, 2013, Volume 25, Number 37, Page 374101
C. L. Young, S. Khoshnevis, and K. Karbstein
Proceedings of the National Academy of Sciences, 2013, Volume 110, Number 29, Page E2668
Meenakshi Dangwal, Garima Malik, Sanjay Kapoor, and Meenu Kapoor
Journal of Molecular Biology, 2013, Volume 425, Number 16, Page 2853
L. Steimer, J. P. Wurm, M. H. Linden, M. G. Rudolph, J. Wohnert, and D. Klostermeier
Nucleic Acids Research, 2013, Volume 41, Number 12, Page 6259
S. Dalvin, F. Nilsen, and R. Skern-Mauritzen
Journal of Natural History, 2013, Volume 47, Number 5-12, Page 889
Andrea A. Putnam and Eckhard Jankowsky
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2013, Volume 1829, Number 8, Page 884
M. G. Rudolph, Y. del Toro Duany, S. P. Jungblut, A. Ganguly, and D. Klostermeier
Nucleic Acids Research, 2013, Volume 41, Number 2, Page 1058
Agneyo Ganguly, Yoandris del Toro Duany, and Dagmar Klostermeier
Journal of Molecular Biology, 2013, Volume 425, Number 1, Page 32
Arnon Henn, Michael J. Bradley, and Enrique M. De La Cruz
Annual Review of Biophysics, 2012, Volume 41, Number 1, Page 247
Anne R. Karow and Dagmar Klostermeier
Journal of Molecular Biology, 2010, Volume 402, Number 4, Page 629
Nicholas J. Watkins and Markus T. Bohnsack
Wiley Interdisciplinary Reviews: RNA, 2012, Volume 3, Number 3, Page 397
Georg Mohr, Mark Del Campo, Kathryn G. Turner, Benjamin Gilman, Rachel Z. Wolf, and Alan M. Lambowitz
Journal of Molecular Biology, 2011, Volume 413, Number 5, Page 952
Josette Banroques, Olivier Cordin, Monique Doère, Patrick Linder, and N. Kyle Tanner
Journal of Molecular Biology, 2011, Volume 413, Number 2, Page 451
Akihisa Tsutsumi, Tomoko Kawamata, Natsuko Izumi, Hervé Seitz, and Yukihide Tomari
Nature Structural & Molecular Biology, 2011, Volume 18, Number 10, Page 1153
Jeffrey P. Potratz, Mark Del Campo, Rachel Z. Wolf, Alan M. Lambowitz, and Rick Russell
Journal of Molecular Biology, 2011, Volume 411, Number 3, Page 661
Ilia Kaminker, Anastasiya Sushenko, Alexey Potapov, Shirley Daube, Barak Akabayov, Irit Sagi, and Daniella Goldfarb
Journal of the American Chemical Society, 2011, Volume 133, Number 39, Page 15514
Patrick Schütz, Elisabet Wahlberg, Tobias Karlberg, Martin Hammarström, Ruairi Collins, Alex Flores, and Herwig Schüler
Journal of Molecular Biology, 2010, Volume 400, Number 4, Page 768
A. L. Mallam, I. Jarmoskaite, P. Tijerina, M. Del Campo, S. Seifert, L. Guo, R. Russell, and A. M. Lambowitz
Proceedings of the National Academy of Sciences, 2011, Volume 108, Number 30, Page 12254
Julian Strohmeier, Ines Hertel, Ulf Diederichsen, Markus G. Rudolph, and Dagmar Klostermeier
Biological Chemistry, 2011, Volume 392, Number 4
Patrick Linder and Eckhard Jankowsky
Nature Reviews Molecular Cell Biology, 2011, Volume 12, Number 8, Page 505
Yoandris del Toro Duany, Dagmar Klostermeier, and Markus G. Rudolph
Biochemistry, 2011, Volume 50, Number 26, Page 5816
Yoandris del Toro Duany and Dagmar Klostermeier
Physical Chemistry Chemical Physics, 2011, Volume 13, Number 21, Page 10009
Murray Stewart
Trends in Biochemical Sciences, 2010, Volume 35, Number 11, Page 609
M. Hilbert, F. Kebbel, A. Gubaev, and D. Klostermeier
Nucleic Acids Research, 2011, Volume 39, Number 6, Page 2260
A. Ganguly, Y. del Toro Duany, M. G. Rudolph, and D. Klostermeier
Nucleic Acids Research, 2011, Volume 39, Number 5, Page 1789
Roberta Tarallo, Angela Bamundo, Giovanni Nassa, Ernesto Nola, Ornella Paris, Concetta Ambrosino, Angelo Facchiano, Marc Baumann, Tuula A. Nyman, and Alessandro Weisz
PROTEOMICS, 2011, Volume 11, Number 1, Page 172
Inga Jarmoskaite and Rick Russell
Wiley Interdisciplinary Reviews: RNA, 2011, Volume 2, Number 1, Page 135
S. Lattmann, B. Giri, J. P. Vaughn, S. A. Akman, and Y. Nagamine
Nucleic Acids Research, 2010, Volume 38, Number 18, Page 6219
Jaya G. Yodh, Michael Schlierf, and Taekjip Ha
Quarterly Reviews of Biophysics, 2010, Volume 43, Number 02, Page 185
Jacek Krol, Inga Loedige, and Witold Filipowicz
Nature Reviews Genetics, 2010
Yangzi He, Gregers R Andersen, and Klaus H Nielsen
EMBO reports, 2010, Volume 11, Number 3, Page 180

Comments (0)

Please log in or register to comment.