Jump to ContentJump to Main Navigation

Open Life Sciences

formerly Central European Journal of Biology

1 Issue per year

IMPACT FACTOR increased in 2014: 0.710
5-year IMPACT FACTOR: 0.782

SCImago Journal Rank (SJR) 2014: 0.274
Source Normalized Impact per Paper (SNIP) 2014: 0.518
Impact per Publication (IPP) 2014: 0.773

Open Access


Lipopeptides as anti-infectives: a practical perspective

1Research s& Development Unit, Spider Biotech S.r.l, I-10010, Colleretto Giacosa, Italy

2Department of Biomedical Sciences and Technologies, University of Cagliari, 09042, Cagliari, Italy

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 4, Issue 3, Pages 258–273, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-009-0031-3, July 2009

Publication History

Published Online:


Lipopeptide antibiotics represent an old class of antibiotics that were discovered over 50 years ago, which includes the old polymyxins but also new entries, such as the recently approved daptomycin. They generally consist of a hydrophilic cyclic peptide portion attached to a fatty acid chain which facilitates insertion into the lipid bilayer of bacterial membranes. This review presents an overview of this class of antibiotics, focusing on their therapeutic applications and putting particular emphasis on chemical modifications introduced to improve their activity.

Keywords: Lipopeptides; Antimicrobial peptides; Antibiotics; Semi-synthetic analogues; Daptomycin; Polymyxin; Echinocandin; Lipid membranes; LPS

  • [1] Nathan C., Goldberg F.M., The profit problem in antibiotic R&D, Nat. Rev. Drug Discov., 2005, 4, 887–891 http://dx.doi.org/10.1038/nrd1878 [CrossRef]

  • [2] Payne D.J., Gwynn M.N., Holmes D.J., Pompliano D.L., Drugs for bad bugs: confronting the challenges of antibacterial discovery, Nat. Rev. Drug Discov., 2007, 6, 29–40 http://dx.doi.org/10.1038/nrd2201 [CrossRef]

  • [3] Jerala R., Synthetic lipopeptides: a novel class of anti-infectives, Expert Opin. Investig. Drugs, 2007, 16, 1159–1169 http://dx.doi.org/10.1517/13543784.16.8.1159 [CrossRef]

  • [4] Strieker M., Marahiel M.A., The structural diversity of acidic lipopeptide antibiotics, ChemBioChem, 2009, 10, 607–616 http://dx.doi.org/10.1002/cbic.200800546 [CrossRef]

  • [5] Martin N.I., Hu H., Moake M.M., Churey J.J., Whittal R., Worobo R.W., et al., Isolation, structural characterization, and properties of Mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M, J. Biol. Chem., 2003, 278, 13124–13132 http://dx.doi.org/10.1074/jbc.M212364200 [CrossRef]

  • [6] Arnold T.M., Forrest G.N., Messmer K.J., Polymyxin antibiotics for gram-negative infections, Am. J. Health Syst. Pharm., 2007, 64, 819–826 http://dx.doi.org/10.2146/ajhp060473 [CrossRef]

  • [7] Zavascki A.P., Goldani L.Z., Li J., Nation R.L., Polymyxin B for the treatment of multidrugresistant pathogens: a critical review, J. Antimicrob. Chemother., 2007, 60, 1206–1215 http://dx.doi.org/10.1093/jac/dkm357 [CrossRef]

  • [8] Denning D.W., Echinocandin antifungal drugs, Lancet, 2003, 362, 1142–1151 http://dx.doi.org/10.1016/S0140-6736(03)14472-8 [CrossRef]

  • [9] Tossi A., Host defense peptides: roles and applications, Curr. Prot. Pept. Sci., 2005, 6, 1–3 http://dx.doi.org/10.2174/1389203053027539 [CrossRef]

  • [10] Giuliani A., Pirri G., Fabiole Nicoletto S., Antimicrobial peptides: an overview of a promising class of therapeutics, Cent. Eur. J. Biol., 2007, 2, 1–33 http://dx.doi.org/10.2478/s11535-007-0010-5 [CrossRef]

  • [11] Hancock R.E.W., Sahl H.-G., Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol., 2006, 24, 1551–1557 http://dx.doi.org/10.1038/nbt1267 [CrossRef]

  • [12] Radek K., Gallo G., Antimicrobial peptides: natural effectors of the innate immune system, Semin. Immunopathol., 2007, 29, 27–43 http://dx.doi.org/10.1007/s00281-007-0064-5 [CrossRef]

  • [13] Giuliani A., Pirri G., Bozzi A., Di Giulio A., Aschi M., Rinaldi A.C., Antimicrobial peptides: natural templates for synthetic membrane-active compounds, Cell. Mol. Life Sci., 2008, 65, 2450–2460 http://dx.doi.org/10.1007/s00018-008-8188-x [CrossRef]

  • [14] Scott R.W., DeGrado W.F., Tew G.N., De novo designed synthetic mimics of antimicrobial peptides, Curr. Opin. Biotechnol., 2008, 19, 620–627 http://dx.doi.org/10.1016/j.copbio.2008.10.013 [CrossRef]

  • [15] Moyle P.M., Toth I., Self-adjuvanting lipopeptide vaccines, Curr. Med. Chem., 2008, 15, 505–516 http://dx.doi.org/10.2174/092986708783503249 [CrossRef]

  • [16] Ongena M., Jacques P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol, Trends Microbiol., 2007, 16, 115–125 http://dx.doi.org/10.1016/j.tim.2007.12.009 [CrossRef]

  • [17] Debono M., Barnhart M., Carrelll C.B., Hoffmann J.A., Occolowitz J.L., Abbott B.J., et al., A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation, J. Antibiot. (Tokyo), 1987, 40, 761–777

  • [18] Lakey J.H., Lea E.J., Rudd B.A., Wright H.M., Hopwood D.A., A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity, J. Gen. Microbiol., 1983, 129, 3565–3573 [CrossRef]

  • [19] Huber F.M., Pieper R.L., Tietz A.J., The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978C, J. Biotechnol., 1988, 7, 283–292 http://dx.doi.org/10.1016/0168-1656(88)90040-5 [CrossRef]

  • [20] Baltz R.H., McHenney M.A. Hosted T.J., Genetics of lipopeptide antibiotic biosynthesis in Streptomyces fradiae A54145 and Streptomyces roseosporus A21978C, In: Developments in Industrial Microbiology, Baltz R.H., Hegeman G.D., Skatrud P.L., (Eds.), Society for Industrial Microbiology, Fairfax, VA, 1997

  • [21] Debono M., Abbott B.J., Molloy R.M., Fukuda D.S., Hunt A.H., Daupert V.M., et al., Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032), J. Antibiot. (Tokyo), 1988, 41, 1093–1105

  • [22] Gu J.-Q., Nguyen K.T., Gandhi C., Rajgarhia V., Baltz R.H., Brian P., et al., Structural characterization of daptomycin analogues A21978C1-3 (D-Asn11) produced by a recombinant Streptomyces roseosporus strain, J. Nat. Prod., 2007, 70, 233–240 http://dx.doi.org/10.1021/np0605135

  • [23] Cottagnoud P., Daptomycin: a new treatment for insidious due to gram-positive pathogens, Swiss Med. Wkly, 2008, 138, 93–99

  • [24] Brody T.M., Larner J., Minneman K.P., Neu H.C., Human Pharmacology: Molecular to Clinical, Mosby, St. Louis, MO, 1994

  • [25] Miao V., Coëffet-LeGal M.-F., Brian P., Brost R., Penn J., Whiting A., et al., Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry, Microbiology, 2005, 151, 1507–1523 http://dx.doi.org/10.1099/mic.0.27757-0 [CrossRef]

  • [26] Boeck L.D., Fukuda D.S., Abbott B.J., Debono M., Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis, J. Antibiot., 1988, 41, 1085–1092

  • [27] Siedlecki J., Hill J., Parr I., Yu X., Morytko M., Zhang Y., et al., Array synthesis of novel lipodepsipeptide, Bioorg. Med. Chem. Lett, 2003, 13, 4245–4249 http://dx.doi.org/10.1016/j.bmcl.2003.07.025 [CrossRef]

  • [28] Grünewald J., Sieber S.A., Mahlert C., Linne U., Marahiel M.A., Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics, J. Am. Chem. Soc., 2004, 126, 17025–17031 http://dx.doi.org/10.1021/ja045455t [CrossRef]

  • [29] Huber F.M., Berry D.M., Pieper R.L., Tietz A.J., The synthesis of A21978C analogs by Streptomyces roseosporus cultivated under carbon limitation and fed fatty acids, Biotech. Lett., 1990, 12, 789–792 http://dx.doi.org/10.1007/BF01022596 [CrossRef]

  • [30] Huber F.M., Pieper R.L., Tietz A.J., Dispersal of insoluble fatty acid precursors in stirred bioreactors as a mechanism to control antibiotic factor distribution, In: Ho C.S., Oldshue J.Y., (Eds.), Biotechnology Processes — Scale up and Mixing, American Institute of Chemical Engineers, New York, 1987

  • [31] Penn J., Li X., Whiting A., Latif M., Gibson T., Silva C.J., et al., Heterologous production of daptomycin in Streptomyces lividans, J. Ind. Microbiol. Biotechnol., 2006, 33, 121–128 http://dx.doi.org/10.1007/s10295-005-0033-8 [CrossRef]

  • [32] Muangsiri W., Kirsch L.E., The kinetics of the alkaline degradation of daptomycin, J. Pharm. Sci., 2001, 90, 1066–1075 http://dx.doi.org/10.1002/jps.1060 [CrossRef]

  • [33] Bechinger B., The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solidstate NMR spectroscopy, Biochim. Biophys. Acta, 1999, 1462, 157–183 http://dx.doi.org/10.1016/S0005-2736(99)00205-9 [CrossRef]

  • [34] Bechinger B., Lohner K., Detergent-like actions of linear amphipathic cationic antimicrobial peptides, Biochim. Biophys. Acta, 2006, 1758, 1529–1539 http://dx.doi.org/10.1016/j.bbamem.2006.07.001 [CrossRef]

  • [35] Ho S.W., Jung D., Calhoun J.R., Lear J.D., Okon M., Scott W.R.P., et al., Effect of divalent cations on the structure of the antibiotic daptomycin, Euro. Biophysics J., 2008, 37, 421–433. http://dx.doi.org/10.1007/s00249-007-0227-2 [CrossRef]

  • [36] Jung D., Rozek A., Okon M., Hancock R.E.W., Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin, Chem. Biol., 2004, 11, 949–957 http://dx.doi.org/10.1016/j.chembiol.2004.04.020 [CrossRef]

  • [37] Straus S.K., Hancock R.E., Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptide and lipopeptides, Biochim. Biophy. Acta, 2006, 1758, 1215–1223 http://dx.doi.org/10.1016/j.bbamem.2006.02.009 [CrossRef]

  • [38] Jung D., Powers J.P., Straus S.K., Hancock R.E.W., Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes, Chem. Phys. Lipids, 2008, 154, 120–128 http://dx.doi.org/10.1016/j.chemphyslip.2008.04.004 [CrossRef]

  • [39] Thorne G.M., Alder J., Daptomycin: a novel lipopeptide antibiotic, Clin. Microb. Newsletter, 2002, 25, 33–40 http://dx.doi.org/10.1016/S0196-4399(02)80007-1 [CrossRef]

  • [40] Silverman J.A., Perlmutter N.G., Shapiro H.M., Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus, Antimicrob. Agents Chemother., 2003, 47, 2538–2544 http://dx.doi.org/10.1128/AAC.47.8.2538-2544.2003 [CrossRef]

  • [41] Muthaiyan A., Silverman J.A., Jayaswal R.K., Wilkinson B.J., Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization, Antimicrob. Agents Chemother., 2008, 52, 980–990 http://dx.doi.org/10.1128/AAC.01121-07 [CrossRef]

  • [42] English B.K., Maryniw E.M., Talati A.J., Meals E.A., Diminished macrophage inflammatory response to staphylococcus aureus isolates exposed to daptomycin versus vancomycin or oxacillin, Antimicrob. Agents Chemother., 2006, 50, 2225–2227 http://dx.doi.org/10.1128/AAC.01559-05 [CrossRef]

  • [43] Kanafani Z.A., Corey G.R., Daptomycin: a rapidly bactericidal lipopeptide for the treatment of Grampositive infections, Expert Rev. Anti Infect. Ther., 2007, 5, 177–184 http://dx.doi.org/10.1586/14787210.5.2.177 [CrossRef]

  • [44] Nguyen K.T., Ritz D., Gu J.-Q., Alexander D., Chu M., Miao V., et al., Combinatorial biosynthesis of novel antibiotics related to daptomycin, Proc. Natl. Acad. Sci. USA, 2006, 103, 17462–17467 http://dx.doi.org/10.1073/pnas.0608589103 [CrossRef]

  • [45] Kopp F., Grunewald J., Mahlert C., Marahiel M.A., Chemoenzymetic design of acidic lipopeptide hybrids: new insights into the structure-activity relationship of daptomycin and A54145, Biochemistry, 2006, 45, 10474–10481 http://dx.doi.org/10.1021/bi0609422 [CrossRef]

  • [46] Eliopoulos G.M., Willey S., Reiszner E., Spitzer P.G., Caputo G., Moellering R., In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic, Antimicrob. Agents Chemother., 1986, 30, 532–535

  • [47] Andrew J.H., Wale M.C., Wale L.J., Greenwood D., The effect of cultural conditions on the activity of LY146032 against staphylococci and streptococci, J. Antimicrob. Chemother., 1987, 20, 213–221 http://dx.doi.org/10.1093/jac/20.2.213 [CrossRef]

  • [48] Chow A.W., Cheng N., In vitro activities of daptomycin (LY146032) and paldimycin (U-70, 138F) against anaerobic Gram-positive bacteria, Antimicrob. Agents Chemother., 1988, 32, 788–790

  • [49] Ball L.J., Goult C.M., Donarsi J.A., Micklefield J., Ramesh V., NMR strcture determination and calcium binding effects of lipopeptide antibiotic daptomycin”, Org. Biomol. Chem., 2004, 2, 1872–1878 http://dx.doi.org/10.1039/b402722a [CrossRef]

  • [50] Rotondi K.S., Gierasch L.M., A well defined amphipathic conformation for the calcium- free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers, 2005, 80, 374–385 http://dx.doi.org/10.1002/bip.20238 [CrossRef]

  • [51] Scott W.R.P., Baek S.-B., Jung D., Hancock R.E.W., Straus S.K., NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles, Biochim. Biophys. Acta, 2007, 1768, 3116–3126 http://dx.doi.org/10.1016/j.bbamem.2007.08.034 [CrossRef]

  • [52] Van Bambeke F., Mingeot-Leclercq M.P., Struelens M.J., Tulkens P.M. The bacterial envelope as a target for novel anti-MRSA antibiotics, Trends Pharmacol. Sci., 2008, 29, 124–134 [CrossRef]

  • [53] Doekel S., Coëffet-Le Gal M.-F., Gu J.-Q., Chu M., Baltz R.H., Brian P., Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus, Microbiology, 2008, 154, 2872–2880 http://dx.doi.org/10.1099/mic.0.2008/020685-0 [CrossRef]

  • [54] Kato A., Nakaya S., Kokubo N., Aiba Y., Ohashi Y., Hirata H., A new anti-MRSA antibiotic complex, WAP-8294A. I. Taxonomy, isolation and biological activities, J. Antibiot., 1998, 51, 929–935

  • [55] Nakaya S., Ohashi Y., Hirata H., Fujii K., Harada K.-I., WAP-8294A2, A novel anti-MRSA antibiotic reduced by Lysobacter sp., J. Am. Chem. Soc., 1997, 119, 6680–6681 http://dx.doi.org/10.1021/ja970895o

  • [56] Kato A., Nakaya S., Suzuki N., Aiba Y., Kokubo N., Hirata H., et al., Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 1997, 39th, 253, (Chem. Abstr., 1999, 131, 115328)

  • [57] Harada K.-I., Suzuki M., Kato A., Fuji K., Oka H., Ito Y., Separation of WAP-8294A components, a novel anti-methicillin-resistant Staphylococcus aureus antibiotic using high-speed counter-current chromatography, J. Chromat. A, 2001, 932, 75–81 http://dx.doi.org/10.1016/S0021-9673(01)01235-3 [CrossRef]

  • [58] Jones T.S.G., Chemical evidence for the multiplicity of the antibiotics produced by Bacillus polymyxa, Annals of the New York Academy of Sciences, 1949, 51, 909–916 http://dx.doi.org/10.1111/j.1749-6632.1949.tb27317.x [CrossRef]

  • [59] Hausmann W., The Amino Acid Sequence of Polymyxin B1, J. Am. Chem. Soc., 1956, 78, 3663–3667 http://dx.doi.org/10.1021/ja01596a029 [CrossRef]

  • [60] Biserte G.A, Dautrevaux M., Structure of polymyxin B, Bull. Soc. Chim. Biol.,1957, 795–812

  • [61] Vogler K., Studer R.O., Lanz P., Lergier W., Böhni E., Total synthesis of two cyclodecapeptides exerting polymyxin-like activity, Experientia, 1961, 17, 223–224 http://dx.doi.org/10.1007/BF02160629 [CrossRef]

  • [62] Orwa J.A., Govaerts C., Busson R., Roets E., Van Schepdael A., Hoogmartens J., Isolation and structural characterization of polymyxin B components, J. Chromat. A, 2001, 912, 369–373 http://dx.doi.org/10.1016/S0021-9673(01)00585-4 [CrossRef]

  • [63] Li J., Nation R.L., Milne R.W., Turnidge J.D., Coulthard K., Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria, Int. J. Antimicrob. Agents, 2005, 25, 11–25 http://dx.doi.org/10.1016/j.ijantimicag.2004.10.001 [CrossRef]

  • [64] Li J., Milne R.W., Nation R.L., Turnidge J.D., Coulthard K., Valentine J., Simple method for assaying colistin methanesulfonate in plasma and urine using high-performance liquid chromatography, Antimicrob. Agents Chemother., 2002, 46, 3304–3307 http://dx.doi.org/10.1128/AAC.46.10.3304-3307.2002 [CrossRef]

  • [65] Duwe A.K., Rupar C.A., Horsman G.B., Vas S.I., In vitro cytotoxicity and antibiotic activity of polymyxin B nonapeptide, Antimicrob. Agents Chemother., 1996, 30, 340–341

  • [66] Storm D.R., Rosenthal K.S., Swanson P.E., Polymyxin and related peptide antibiotics, Annu. Rev. Biochem., 1977, 46, 723–763 http://dx.doi.org/10.1146/annurev.bi.46.070177.003451 [CrossRef]

  • [67] Danner R.L., Joiner K.A., Rubin M., Paterson W.H., Johnson N., Ayers K.M., et al., Purification, toxicity, and antiendotoxin activity of polymyxin B nonapeptide, Antimicrob. Agents Chemother. 1989, 33, 1428–1434

  • [68] Vaara M., Agents that increase the permeability of the outer membrane, Microbiol. Rev., 1992, 56, 395–411

  • [69] Vaara M., Vaara T., Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide, Nature, 1983, 303, 526–528 http://dx.doi.org/10.1038/303526a0 [CrossRef]

  • [70] Vaara M., Vaara T., Polycations sensitize enteric bacteria to antibiotics, Antimicrob. Agents Chemother., 1983, 24, 107–113

  • [71] Vaara M., Vaara T., Polycations as outer membrane-disorganizing agents, Antimicrob. Agents Chemother., 1983, 24, 114–122

  • [72] Ito-Kagawa M., Koyama Y., Studies on the selectivity of action of colistin, colistin nonapeptide and colistin heptapeptide on the cell envelope of Escherichia coli, J. Antibiot., 1984, 37, 926–928

  • [73] Lam C., Hildebrandt J., Schutze E., Wenzel A.F., Membrane-disorganizing property of polymyxin B nonapeptide, J. Antimicrob. Chemother., 1986, 18, 9–15 http://dx.doi.org/10.1093/jac/18.1.9 [CrossRef]

  • [74] McCashion R.N., Lynch W.H., Effects of polymyxin B nonapeptide on Aeromonas salmonicida,Antimicrob. Agents Chemother., 1987, 31, 1414–1419

  • [75] Kubesch P., Whesling M., Tummler B., Membrane permeability of Pseudomonas aeruginosa to 4-quinolones, Zentralbl. Bakteriol. Mikrobiol. Hyg. ABT. 1, 1987, 265, 197–202

  • [76] Moestrup S.K., Cui S., Vorum H., Bregengård C., Bjorn S.E., Norris K., et al., Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs, J. Clin. Investig., 1995, 96, 1404–1413 http://dx.doi.org/10.1172/JCI118176 [CrossRef]

  • [77] Vaara M., Fox J., Loidl G., Siikanen O., Apajalahti J., Hansen F., et al., Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents, Antimicrob. Agents Chemother., 2008, 52, 3229–3236 http://dx.doi.org/10.1128/AAC.00405-08 [CrossRef]

  • [78] Tsubery H., Ofek I., Cohen S., Fridkin M., The functional association of polymyxin B with bacterial lipopolysaccharide is stereospecific: studies on polymyxin B nonapeptide, Biochemistry, 2000, 39, 11838–11844 http://dx.doi.org/10.1021/bi000386q [CrossRef]

  • [79] Heineman B., Kaplan M.A., Muir R.D., Hooper I.R., Amphomycin, a new antibiotic, Antibiot. Chemother., 1953, 3, 1239–1242

  • [80] Bodanszky M., Chaturvedi N.C., Scozzie J.A., The structure of fatty acids from the antibiotic amphomycin, J. Antibiot., 1969, 22, 399–408 [CrossRef]

  • [81] Bodanszky M., Siegler G.F., Bodanszky A., Structure of the peptide antibiotic Amphomycin, J. Am. Chem. Soc., 1973, 95, 2352–2357 http://dx.doi.org/10.1021/ja00788a040 [CrossRef]

  • [82] Wacowich-Sgarbi S.A., Boyd V.A., Cameron D.R., Chen Y., Dugourd D., Jia Q., et al., Synthesis and Structure-Activity Relationship (SAR) Studies on Dab-9 Substitutions of the Lipopeptide Antibiotic Amphomycin, presented at the 229th National ACS (American Chemical Society Meeting) Meeting & Exposition, San Diego, CA, 13–17 March 2005

  • [83] Sgarbi P.W.M., Boyd V.A., Cameron D.R., Chen Y., Jia Q., Nodwell M., et al., Synthesis and structureactivity relationship (SAR) studies on the lipophilic tail of the lipopeptide antibiotic Amphomycin, presented at the 229th National ACS (American Chemical Society Meeting) Meeting & Exposition, San Diego, CA, 13–17 March 2005

  • [84] Cameron D.R., Lipopeptides: SAR and synthesis of a new class of semi-synthetic antibiotics, presented at the 88th Canadian Chemistry Conference (CSC) and Exhibition, Saskatoon, CDN, 28 May–1 June 2005

  • [85] Yang H., Clement J.J., Dugourd D., MX-2401 bactericidal activity and membrane depolarization in Staphylococcus epidermidis, F1-364, presented at the 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the concurrent 46th Annual Infectious Diseases Society of America (IDSA) meeting, Washington, DC, 25–28 October 2008

  • [86] Benz F., Knusel F., Nuesch J., Treichler H., Voser W., Nyfeler R., et al., Echinocandin B, ein neuartiges Polypeptid-Antibiotikum aus Aspergillus nidulans var. echinulatus: Isolierung und Bausteine, Helv. Chim. Acta, 1974, 57, 2459–2477 http://dx.doi.org/10.1002/hlca.19740570818 [CrossRef]

  • [87] Keller-Juslen C., Kuhn M., Loosli H.-R., Petcher T.J., Weber H.P., von Wartburg A., Struktur des Cyclopeptid-Antibiotikums SL 7810 (= Echinocandin B), Tetrahedron Lett., 1976, 4147–4150, (in German)

  • [88] Koyama G., The crystal and molecular structure of 3-hydroxy-4-methyl-proline, Helv. Chim. Acta, 1974, 57, 2477–2483 http://dx.doi.org/10.1002/hlca.19740570819 [CrossRef]

  • [89] von Traber R., Keller-Juslen C., Loosli H.-R., Kuhn M., von Wartburg A., Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C und D, Helv. Chim. Acta, 1979, 62, 1252–1267, (in German) http://dx.doi.org/10.1002/hlca.19790620436 [CrossRef]

  • [90] Kurokawa N., Ohfune Y., Total synthesis of echinocandins. 1. Stereocontrolled syntheses of the constituent amino acids, J. Am. Chem. Soc., 1986, 108, 6041–6043 http://dx.doi.org/10.1021/ja00279a064 [CrossRef]

  • [91] Kurokawa N., Ohfune Y., Total synthesis of Echinocandins. 2. Total synthesis of Echinocandins D via efficient peptide coupling reactions, J. Am. Chem. Soc., 1986, 108, 6043–6045 http://dx.doi.org/10.1021/ja00279a065 [CrossRef]

  • [92] Balbovec J.M., Black R.M., Hammond M.L., Heck J.V., Zambias R.A., Abruzzo G., et al., Synthesis, Stability and biological evaluation of water soluble prodrugs of a new Echinocandin Lipopeptide. Discovery of a potential clinical agent for the treatment of systemic Candidiasis and Pneumocystis Carinii Pneumonia (PCP), J. Med. Chem, 1992, 35, 194–198 http://dx.doi.org/10.1021/jm00079a027 [CrossRef]

  • [93] Taft C.S., Selitrennikoff C.P., Cilofungin Inhibition of (1,3)-β-glucan synthesis: the lipophilic side chain is essential for inhibition of enzyme activity, J. Antibiot., 1990, 43, 433–437

  • [94] Debono M., Abbott B.J., Fukuda D.S., Barnhart M., Willard K.E., Molloy R.M., et al., Synthesis of new analogs of Echinocandin B by enzymatic deacylation and chemical reacylation of the Echinocandin B peptide: Synthesis of the antifungal agent Cilofungin (LY121019), J. Antibiot., 1989, 42, 389–397

  • [95] Boeck L.D., Fukuda D.S., Abbott B.J., Debono M., Deacylation of Echinocandin B by Actinoplanes utahensis, J. Antibiot., 1989, 42, 382–388 [CrossRef]

  • [96] Debono M., Abbott B.J., Turner J.R., Howard L.C., Gordee R.S., Hunt A.H., et al., Synthesis and evaluation of LY121019, a member of a series of semi-synthetic analogues of the antifungal lipopeptide Echinocandin B, Ann. N.Y. Acad. Sci., 1988, 544, 152–167 http://dx.doi.org/10.1111/j.1749-6632.1988.tb40398.x [CrossRef]

  • [97] Diekema D.J., Petroelje B., Messer S.A., Hollis R.J., Pfaller M.A., Activity of available and investigational antifungal agents against Rhodotorula species, J. Clin. Microbiol., 2005, 43, 476–478 http://dx.doi.org/10.1128/JCM.43.1.476-478.2005 [CrossRef]

  • [98] Nasto B., Biotech at the beauty counter, Nat. Biotechnol., 2007, 25, 617–619 http://dx.doi.org/10.1038/nbt0607-617 [CrossRef]

  • [99] Rinaldi A., Healing beauty? More biotechnology cosmetic products that claim drug-like properties reach the market, EMBO Reports, 2008, 9, 1073–1077 http://dx.doi.org/10.1038/embor.2008.200 [CrossRef]

  • [100] Nagarajan R., Schabel A.A., Occolowitz J.L., Counter F.T., Ott J.L., Felty-Duckworth A.M., Synthesis and antibacterial evaluation of N-alkyl vancomycins., J. Antibiot. (Tokyo), 1989, 42, 63–72 [CrossRef]

  • [101] Nagarajan R., Structure-activity relationships of vancomycin-type glycopeptide antibiotics, J. Antibiot. (Tokyo), 1993, 46, 1181–1195 [CrossRef]

  • [102] Higgins D.L., Chang R., Debabov D.V., Leung J., Wu T., Krause K.M., et al., Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2005, 49, 1127–1134 http://dx.doi.org/10.1128/AAC.49.3.1127-1134.2005 [CrossRef]

  • [103] Leadbetter M.R., Adams S.M., Bazzini B., Fatheree P.R., Karr D.E., Krause K.M., et al., Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424), J. Antibiot. (Tokyo), 2004, 57, 326–336

  • [104] Xiong Y.Q., Yeaman M.R., Bayer A.S., In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action, Antimicrob. Agents Chemother., 1999, 43, 1111–1117

  • [105] Yeaman M.R., Bayer A.S., Koo S.P., Foss W., Sullam P.M., Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action, J. Clin. Investig., 1998, 101, 178–187 http://dx.doi.org/10.1172/JCI562 [CrossRef]

  • [106] Judice J.K., Pace J.L., Semi-synthetic glycopeptide antibacterials, Bioorg. Med. Chem. Lett., 2003, 13, 4165–4168 http://dx.doi.org/10.1016/j.bmcl.2003.08.067 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Stephen A. Cochrane, Richard R. Surgenor, Kevin M. W. Khey, and John C. Vederas
Organic Letters, 2015, Page 151014101824006
Stephen A. Cochrane, Christopher T. Lohans, Marco J. van Belkum, Manon A. Bels, and John C. Vederas
Org. Biomol. Chem., 2015, Volume 13, Number 21, Page 6073
Bonan Li and Jun F. Liang
European Journal of Lipid Science and Technology, 2015, Page n/a
Mohini M. Konai, Chandradhish Ghosh, Venkateswarlu Yarlagadda, Sandip Samaddar, and Jayanta Haldar
Journal of Medicinal Chemistry, 2014, Volume 57, Number 22, Page 9409
Stephen A. Cochrane and John C. Vederas
International Journal of Antimicrobial Agents, 2014, Volume 44, Number 6, Page 493
Gerald Bills, Yan Li, Li Chen, Qun Yue, Xue-Mei Niu, and Zhiqiang An
Nat. Prod. Rep., 2014, Volume 31, Number 10, Page 1348
Shangwen Luo, Aleksej Krunic, Hahk-Soo Kang, Wei-Lun Chen, John L. Woodard, James R. Fuchs, Steven M. Swanson, and Jimmy Orjala
Journal of Natural Products, 2014, Volume 77, Number 8, Page 1871
Sílvia Vilà, Cristina Camó, Eduard Figueras, Esther Badosa, Emilio Montesinos, Marta Planas, and Lidia Feliu
European Journal of Organic Chemistry, 2014, Volume 2014, Number 22, Page 4785
Stephen A. Cochrane and John C. Vederas
Medicinal Research Reviews, 2014, Page n/a
Stephen A. Cochrane, Brandon Findlay, John C. Vederas, and Elaref S. Ratemi
ChemBioChem, 2014, Volume 15, Number 9, Page 1295
Garry Laverty, Sean P. Gorman, and Brendan F. Gilmore
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 6566
Wei-Ting Liu, Anne Lamsa, Weng Ruh Wong, Paul D Boudreau, Roland Kersten, Yao Peng, Wilna J Moree, Brendan M Duggan, Bradley S Moore, William H Gerwick, Roger G Linington, Kit Pogliano, and Pieter C Dorrestein
The Journal of Antibiotics, 2014, Volume 67, Number 1, Page 99
Matthias D’Hondt, Frederick Verbeke, Sofie Stalmans, Bert Gevaert, Evelien Wynendaele, and Bart De Spiegeleer
Journal of Pharmaceutical Analysis, 2014, Volume 4, Number 3, Page 173
Tanja Schneider, Anna Müller, Henrike Miess, and Harald Gross
International Journal of Medical Microbiology, 2014, Volume 304, Number 1, Page 37
Yan Wang, Guoliang Qian, Fengquan Liu, Yue-Zhong Li, Yuemao Shen, and Liangcheng Du
ACS Synthetic Biology, 2013, Volume 2, Number 11, Page 670
Sílvia Vilà, Esther Badosa, Emilio Montesinos, Lidia Feliu, and Marta Planas
Organic & Biomolecular Chemistry, 2013, Volume 11, Number 20, Page 3365
Su-Hyun Mun, Dae-Ki Joung, Yong-Sik Kim, Ok-Hwa Kang, Sung-Bae Kim, Yun-Soo Seo, Youn-Chul Kim, Dong-Sung Lee, Dong-Won Shin, Kee-Tae Kweon, and Dong-Yeul Kwon
Phytomedicine, 2013, Volume 20, Number 8-9, Page 714
Yunxuan Xie, Stephen Wright, Yuemao Shen, and Liangcheng Du
Natural Product Reports, 2012, Volume 29, Number 11, Page 1277
Jos M. Raaijmakers and Mark Mazzola
Annual Review of Phytopathology, 2012, Volume 50, Number 1, Page 403
A. Muthaiyan, E.M. Martin, S. Natesan, P.G. Crandall, B.J. Wilkinson, and S.C. Ricke
Journal of Applied Microbiology, 2012, Volume 112, Number 5, Page 1020
David S Perlin
Future Microbiology, 2011, Volume 6, Number 4, Page 441
Katrin Reder-Christ, Yvonne Schmidt, Marius Dörr, Hans-Georg Sahl, Michaele Josten, Jos M. Raaijmakers, Harald Gross, and Gerd Bendas
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012, Volume 1818, Number 3, Page 566
Jolanta Janiszewska, Marta Sowińska, Aleksandra Rajnisz, Jolanta Solecka, Izabela Łącka, Sławomir Milewski, and Zofia Urbańczyk-Lipkowska
Bioorganic & Medicinal Chemistry Letters, 2012, Volume 22, Number 3, Page 1388
Rui Ding, Xue-Chang Wu, Chao-Dong Qian, Yi Teng, Ou Li, Zha-Jun Zhan, and Yu-Hua Zhao
The Journal of Microbiology, 2011, Volume 49, Number 6, Page 942
Azusa Kato, Haruhisa Hirata, Yoshitami Ohashi, Kiyonaga Fujii, Kenji Mori, and Ken-ichi Harada
The Journal of Antibiotics, 2011, Volume 64, Number 5, Page 373
Karim Naghmouchi, Lyn Paterson, Bob Forster, Tim McAllister, Sam Ohene-Adjei, Djamel Drider, Ron Teather, and John Baah
Archives of Microbiology, 2011, Volume 193, Number 3, Page 169

Comments (0)

Please log in or register to comment.