Fungal septins: one ring to rule it all? : Open Life Sciences Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

Fungal septins: one ring to rule it all?

1Department of Microbiology and Genetics, Institute of Microbiology and Biochemistry, Salamanca University/CSIC, 37007, Salamanca, Spain

2Cell Signalling Unit, Department of Health and Experimental Sciences, Pompeu Fabra University, 08003, Barcelona, Spain

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 4, Issue 3, Pages 274–289, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-009-0032-2, July 2009

Publication History

Published Online:


Septins are a conserved family of GTP-binding proteins found in living organisms ranging from yeasts to mammals. They are able to polymerize and form hetero-oligomers that assemble into higher-order structures whose detailed molecular architecture has recently been described in different organisms. In Saccharomyces cerevisiae, septins exert numerous functions throughout the cell cycle, serving as scaffolds for many different proteins or as diffusion barriers at the bud neck. In other fungi, septins are required for the proper completion of diverse functions such as polarized growth or pathogenesis. Recent results from several fungi have revealed important differences in septin organization and regulation as compared with S. cerevisiae, especially during Candida albicans hyphal growth and in Ashbya gossypii. Here we focus on these recent findings, their relevance in the biology of these eukaryotes and in consequence the “renaissance” of the study of septin structures in cells showing a different kind of morphological behaviour.

Keywords: Septins; Candida albicans; Saccharomyces cerevisiae; Morphogenesis; Filamentous fungi

  • [1] Hartwell L.H., Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis, Exp. Cell Res., 1971, 69, 265–276 [CrossRef]

  • [2] Carroll C.W., Altman R., Schieltz D., Yates J.R., Kellogg D., The septins are required for the mitosisspecific activation of the Gin4 kinase, J. Cell Biol., 1998, 143, 709–717 [CrossRef]

  • [3] Mino A., Tanaka K., Kamei T., Umikawa M., Fujiwara T., Takai Y., Shs1p: a novel member of septin that interacts with Spa2p, involved in polarized growth in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 1998, 251, 732–736 [CrossRef]

  • [4] De Virgilio C., DeMarini D.J., Pringle J.R., SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells, Microbiology, 1996, 142, 2897–2905 [CrossRef]

  • [5] Fares H., Goetsch L., Pringle J.R., Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae, J. Cell Biol., 1996, 132, 399–411 [CrossRef]

  • [6] Longtine M.S., Bi E., Regulation of septin organization and function in yeast, Trends Cell. Biol., 2003, 13, 403–409 [CrossRef]

  • [7] Longtine M.S., DeMarini D.J., Valencik M.L., Al-Awar O.S., Fares H., De Virgilio C., et al., The septins: roles in cytokinesis and other processes, Curr. Opin. Cell Biol., 1996, 8, 106–119 [CrossRef]

  • [8] Faty M., Fink M., Barral Y., Septins: a ring to part mother and daughter, Curr. Genet., 2002, 41, 123–131 [CrossRef]

  • [9] Silverman-Gavrila R.V., Silverman-Gavrila L.B., Septins: new microtubule interacting partners, Scientific World Journal, 2008, 8, 611–620

  • [10] Spiliotis E.T., Nelson W.J., Here come the septins: novel polymers that coordinate intracellular functions and organization, J. Cell Sci., 2006, 119, 4–10 [CrossRef]

  • [11] Hall P.A., Russell S.E., The pathobiology of the septin gene family, J. Pathol., 2004, 204, 489–505 [CrossRef]

  • [12] Kinoshita M., Assembly of mammalian septins, J. Biochem., 2003, 134, 491–496 [CrossRef]

  • [13] Kinoshita M., Diversity of septin scaffolds, Curr. Opin. Cell Biol., 2006, 18, 54–60 [CrossRef]

  • [14] Martinez C., Ware J., Mammalian septin function in hemostasis and beyond, Exp. Biol. Med., 2004, 229, 1111–1119

  • [15] Douglas L.M., Alvarez F.J., McCreary C., Konopka J.B., Septin function in yeast model systems and pathogenic fungi, Eukaryot. Cell, 2005, 4, 1503–1512 [CrossRef]

  • [16] Finger F.P., One ring to bind them. Septins and actin assembly, Dev. Cell., 2002, 3, 761–763 [CrossRef]

  • [17] Gladfelter A.S., Pringle J.R., Lew D.J., The septin cortex at the yeast mother-bud neck, Curr. Opin. Microbiol, 2001, 4, 681–689 [CrossRef]

  • [18] Kinoshita M., The septins, Genome Biol., 2003, 4, 236 [CrossRef]

  • [19] Versele M., Thorner J., Some assembly required: yeast septins provide the instruction manual, Trends Cell. Biol., 2005, 15, 414–424 [CrossRef]

  • [20] Caudron F., Barral Y., Septins and the lateral compartmentalization of eukaryotic membranes, Dev. Cell., 2009, 16, 493–506 [CrossRef]

  • [21] Gladfelter A.S., Sudbery P., Septins in four model fungal systems: diversity in form and function, In: Hall P.A., Hilary Russell S.E., Pringle J.R., (Eds.), The Septins, John Wiley & Sons, 2008, 125–146

  • [22] Field C.M., Kellogg D., Septins: cytoskeletal polymers or signalling GTPases?, Trends Cell. Biol., 1999, 9, 387–394 [CrossRef]

  • [23] Versele M., Gullbrand B., Shulewitz M.J., Cid V.J., Bahmanyar S., Chen R.E., et al., Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae, Mol. Biol. Cell, 2004, 15, 4568–4583 [CrossRef]

  • [24] Casamayor A., Snyder M., Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function, Mol. Cell. Biol., 2003, 23, 2762–2777 [CrossRef]

  • [25] Zhang J., Kong C., Xie H., McPherson P.S., Grinstein S., Trimble W.S., Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP, Curr. Biol., 1999, 9, 1458–1467 [CrossRef]

  • [26] An H., Morrell J.L., Jennings J.L., Link A.J., Gould K.L., Requirements of fission yeast septins for complex formation, localization, and function, Mol. Biol. Cell, 2004, 15, 5551–5564 [CrossRef]

  • [27] Pan F., Malmberg R.L., Momany M., Analysis of septins across kingdoms reveals orthology and new motifs, BMC Evol. Biol., 2007, 7, 103 [CrossRef]

  • [28] Byers B., Goetsch L., A highly ordered ring of membrane-associated filaments in budding yeast, J. Cell Biol., 1976, 69, 717–721 [CrossRef]

  • [29] Cid V.J., Adamikova L., Sanchez M., Molina M., Nombela C., Cell cycle control of septin ring dynamics in the budding yeast, Microbiology, 2001, 147, 1437–1450

  • [30] Gladfelter A.S., Moskow J.J., Zyla T.R., Lew D.J., Isolation and characterization of effector-loop mutants of CDC42 in yeast, Mol. Biol. Cell, 2001, 12, 1239–1255

  • [31] Iwase M., Luo J., Nagaraj S., Longtine M., Kim H.B., Haarer B.K., et al., Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site, Mol. Biol. Cell, 2006, 17, 1110–1125 [CrossRef]

  • [32] Longtine M.S., Theesfeld C.L., McMillan J.N., Weaver E., Pringle J.R., Lew D.J., Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae, Mol. Cell. Biol., 2000, 20, 4049–4061 [CrossRef]

  • [33] Mortensen E.M., McDonald H., Yates J.3rd, Kellogg D.R., Cell cycle-dependent assembly of a Gin4-septin complex, Mol. Biol. Cell, 2002, 13, 2091–2105 [CrossRef]

  • [34] Versele M., Thorner J., Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4, J. Cell Biol., 2004, 164, 701–715

  • [35] Bouquin N., Barral Y., Courbeyrette R., Blondel M., Snyder M., Mann C., Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae, J. Cell Sci., 2000, 113, 1435–1445

  • [36] Cvrckova F., De Virgilio C., Manser E., Pringle J.R., Nasmyth K., Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast, Genes Dev., 1995, 9, 1817–1830 [CrossRef]

  • [37] Longtine M.S., Fares H., Pringle J.R., Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function, J. Cell Biol., 1998, 143, 719–736 [CrossRef]

  • [38] Weiss E.L., Bishop A.C., Shokat K.M., Drubin D.G., Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p, Nat. Cell. Biol., 2000, 2, 677–685 [CrossRef]

  • [39] Dobbelaere J., Gentry M.S., Hallberg R.L., Barral Y., Phosphorylation-dependent regulation of septin dynamics during the cell cycle, Dev. Cell., 2003, 4, 345–357 [CrossRef]

  • [40] Johnson E.S., Blobel G., Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins, J. Cell Biol., 1999, 147, 981–994 [CrossRef]

  • [41] Tang C.S., Reed S.I., Phosphorylation of the septin Cdc3 in G1 by the Cdc28 kinase is essential for efficient septin ring disassembly, Cell Cycle, 2002, 1, 42–49

  • [42] Pablo-Hernando M.E., Arnáiz-Pita Y., Tachikawa H., del Rey F., Neiman A.M., Vázquez de Aldana C.R., Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae, BMC Cell. Biol., 2008, 9, 55 [CrossRef]

  • [43] McMurray M.A., Thorner J., Septin stability and recycling during dynamic structural transitions in cell division and development, Curr. Biol., 2008, 18, 1203–1208 [CrossRef]

  • [44] McMurray M.A., Thorner J., Reuse, replace, recycle. Specificity in subunit inheritance and assembly of higher-order septin structures during mitotic and meiotic division in budding yeast, Cell Cycle, 2009, 8, 195–203

  • [45] Field C.M., al-Awar O., Rosenblatt J., Wong M.L., Alberts B., Mitchison T.J., A purified Drosophila septin complex forms filaments and exhibits GTPase activity, J. Cell Biol., 1996, 133, 605–616 [CrossRef]

  • [46] Frazier J.A., Wong M.L., Longtine M.S., Pringle J.R., Mann M., Mitchison T.J., et al., Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function, J. Cell Biol., 1998, 143, 737–749 [CrossRef]

  • [47] Kinoshita M., Field C.M., Coughlin M.L., Straight A.F., Mitchison T.J., Self- and actin-templated assembly of mammalian septins, Dev. Cell., 2002, 3, 791–802 [CrossRef]

  • [48] Mendoza M., Hyman A.A., Glotzer M., GTP binding induces filament assembly of a recombinant septin, Curr. Biol., 2002, 12, 1858–1863 [CrossRef]

  • [49] Bertin A., McMurray M.A., Grob P., Park S.S., Garcia G.3rd, Patanwala I., et al., Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly, Proc. Natl. Acad. Sci. USA, 2008, 105, 8274–8279 [CrossRef]

  • [50] Sirajuddin M., Farkasovsky M., Hauer F., Kuhlmann D., Macara I.G., Weyand M., et al., Structural insight into filament formation by mammalian septins, Nature, 2007, 449, 311–315 [CrossRef]

  • [51] John C.M., Hite R.K., Weirich C.S., Fitzgerald D.J., Jawhari H., Faty M., et al., The Caenorhabditis elegans septin complex is nonpolar, EMBO J., 2007, 26, 3296–3307 [CrossRef]

  • [52] Barral Y., Kinoshita M., Structural insights shed light onto septin assemblies and function, Curr. Opin. Cell Biol., 2008, 20, 12–18 [CrossRef]

  • [53] Weirich C.S., Erzberger J.P., Barral Y., The septin family of GTPases: architecture and dynamics, Nat. Rev. Mol. Cell. Biol., 2008, 9, 478–489 [CrossRef]

  • [54] Nagaraj S., Rajendran A., Jackson C.E., Longtine M.S., Role of nucleotide binding in septinseptin interactions and septin localization in Saccharomyces cerevisiae, Mol. Cell. Biol., 2008, 28, 5120–5137 [CrossRef]

  • [55] Iwase M., Luo J., Bi E., Toh-e A., Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae, Genetics, 2007, 177, 215–229 [CrossRef]

  • [56] Caviston J.P., Longtine M., Pringle J.R., Bi E., The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast, Mol. Biol. Cell, 2003, 14, 4051–4066 [CrossRef]

  • [57] Vrabioiu A.M., Mitchison T.J., Structural insights into yeast septin organization from polarized fluorescence microscopy, Nature, 2006, 443, 466–469 [CrossRef]

  • [58] Keaton M.A., Lew D.J., Eavesdropping on the cytoskeleton: progress and controversy in the yeast morphogenesis checkpoint, Curr. Opin. Microbiol, 2006, 9, 540–546 [CrossRef]

  • [59] Chant J., Generation of cell polarity in yeast, Curr. Opin. Cell Biol., 1996, 8, 557–565 [CrossRef]

  • [60] Ford S.K., Pringle J.R., Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site, Dev. Genet., 1991, 12, 281–292 [CrossRef]

  • [61] Halme A., Michelitch M., Mitchell E.L., Chant J., Bud10p directs axial cell polarization in budding yeast and resembles a transmembrane receptor, Curr. Biol., 1996, 6, 570–579 [CrossRef]

  • [62] Kang P.J., Sanson A., Lee B., Park H.O., A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity, Science, 2001, 292, 1376–1378 [CrossRef]

  • [63] Roemer T., Vallier L.G., Snyder M., Selection of polarized growth sites in yeast, Trends Cell. Biol., 1996, 6, 434–441 [CrossRef]

  • [64] Sanders S.L., Herskowitz I., The BUD4 protein of yeast, required for axial budding, is localized to the mother/BUD neck in a cell cycle-dependent manner, J. Cell Biol., 1996, 134, 413–427 [CrossRef]

  • [65] Castillon G.A., Adames N.R., Rosello C.H., Seidel H.S., Longtine M.S., Cooper J.A., et al., Septins have a dual role in controlling mitotic exit in budding yeast, Curr. Biol., 2003, 13, 654–658 [CrossRef]

  • [66] Grava S., Schaerer F., Faty M., Philippsen P., Barral Y., Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast, Dev. Cell., 2006, 10, 425–439 [CrossRef]

  • [67] Kusch J., Meyer A., Snyder M.P., Barral Y., Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast, Genes Dev., 2002, 16, 1627–1639 [CrossRef]

  • [68] Barral Y., Parra M., Bidlingmaier S., Snyder M., Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast, Genes Dev., 1999, 13, 176–187 [CrossRef]

  • [69] Hanrahan J., Snyder M., Cytoskeletal activation of a checkpoint kinase, Mol. Cell, 2003, 12, 663–673 [CrossRef]

  • [70] Lew D.J., The morphogenesis checkpoint: how yeast cells watch their figures, Curr. Opin. Cell Biol., 2003, 15, 648–653 [CrossRef]

  • [71] Cid V.J., Shulewitz M.J., McDonald K.L., Thorner J., Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle, Mol. Biol. Cell, 2001, 12, 1645–1669 [CrossRef]

  • [72] Shulewitz M.J., Inouye C.J., Thorner J., Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae, Mol. Cell. Biol., 1999, 19, 7123–7137

  • [73] Moffat J., Andrews B., Ac’septin’ a signal: kinase regulation by septins, Dev. Cell., 2003, 5, 528–530 [CrossRef]

  • [74] Kozubowski L., Larson J.R., Tatchell K., Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae, Mol. Biol. Cell, 2005, 16, 3455–3466 [CrossRef]

  • [75] Vrabioiu A.M., Mitchison T.J., Symmetry of septin hourglass and ring structures, J. Mol. Biol., 2007, 372, 37–49 [CrossRef]

  • [76] Barral Y., Mermall V., Mooseker M.S., Snyder M., Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast, Mol. Cell, 2000, 5, 841–851 [CrossRef]

  • [77] Seshan A., Bardin A.J., Amon A., Control of Lte1 localization by cell polarity determinants and Cdc14, Curr. Biol., 2002, 12, 2098–2110 [CrossRef]

  • [78] Takizawa P.A., DeRisi J.L., Wilhelm J.E., Vale R.D., Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier, Science, 2000, 290, 341–344 [CrossRef]

  • [79] Dobbelaere J., Barral Y., Spatial coordination of cytokinetic events by compartmentalization of the cell cortex, Science, 2004, 305, 393–396 [CrossRef]

  • [80] Luedeke C., Frei S.B., Sbalzarini I., Schwarz H., Spang A., Barral Y., Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth, J. Cell Biol., 2005, 169, 897–908 [CrossRef]

  • [81] Shcheprova Z., Baldi S., Frei S.B., Gonnet G., Barral Y., A mechanism for asymmetric segregation of age during yeast budding, Nature, 2008, 454, 728–734

  • [82] Soll D.R., Mitchell L.H., Filament ring formation in the dimorphic yeast Candida albicans, J. Cell Biol., 1983, 96, 486–493 [CrossRef]

  • [83] Warenda A.J., Konopka J.B., Septin function in Candida albicans morphogenesis, Mol. Biol. Cell, 2002, 13, 2732–2746 [CrossRef]

  • [84] González-Novo A., Correa-Bordes J., Labrador L., Sánchez M., Vázquez de Aldana C.R., Jiménez J., Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth, Mol. Biol. Cell, 2008, 19, 1509–1518 [CrossRef]

  • [85] Sudbery P.E., The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization, Mol. Microbiol., 2001, 41, 19–31 [CrossRef]

  • [86] González-Novo A., Jiménez J., García M.J., Ríos-Serrano I., Pla J., Jiménez A., et al., Dynamics of CaCdc10, a septin of Candida albicans, in living cells and during infection, Int. Microbiol., 2004, 7, 105–112

  • [87] Liu H., Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen, Int. J. Med. Microbiol., 2002, 292, 299–311 [CrossRef]

  • [88] Lo H.J., Kohler J.R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G.R., Nonfilamentous C. albicans mutants are avirulent, Cell, 1997, 90, 939–949 [CrossRef]

  • [89] Odds F.C., Candida and candidosis, 2nd ed., Bailliére Tindall, London, 1988

  • [90] Berman J., Sudbery P.E., Candida albicans: A molecular revolution built on lessons from budding yeast, Nat. Rev. Genet., 2002, 3, 918–932 [CrossRef]

  • [91] Sudbery P., Gow N., Berman J., The distinct morphogenic states of Candida albicans, Trends Microbiol., 2004, 12, 317–324 [CrossRef]

  • [92] González-Novo A., Labrador L., Jiménez A., Sánchez-Pérez M., Jiménez J., Role of the septin Cdc10 in the virulence of Candida albicans, Microbiol. Immunol., 2006, 50, 499–511

  • [93] Warenda A.J., Kauffman S., Sherrill T.P., Becker J.M., Konopka J.B., Candida albicans septin mutants are defective for invasive growth and virulence, Infect. Immun., 2003, 71, 4045–4051 [CrossRef]

  • [94] Sinha I., Wang Y.M., Philp R., Li C.R., Yap W.H., Wang Y., Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development, Dev. Cell., 2007, 13, 421–432 [CrossRef]

  • [95] Clemente-Blanco A., González-Novo A., Machin F., Caballero-Lima D., Aragón L., Sánchez M., et al., The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans, J. Cell Sci., 2006, 119, 1130–1143 [CrossRef]

  • [96] Dunkler A., Walther A., Specht C.A., Wendland J., Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae, Fungal Genet. Biol., 2005, 42, 935–947 [CrossRef]

  • [97] Esteban P.F., Rios I., Garcia R., Dueñas E., Pla J., Sánchez M., et al., Characterization of the CaENG1 gene encoding an endo-1,3-β-glucanase involved in cell separation in Candida albicans, Curr. Microbiol., 2005, 51, 385–392 [CrossRef]

  • [98] Kelly M.T., MacCallum D.M., Clancy S.D., Odds F.C., Brown A.J., Butler G., The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence, Mol. Microbiol., 2004, 53, 969–983 [CrossRef]

  • [99] Egelhofer T.A., Villen J., McCusker D., Gygi S.P., Kellogg D.R., The septins function in G1 pathways that influence the pattern of cell growth in budding yeast, PLoS ONE, 2008, 3, e2022 [CrossRef]

  • [100] Gladfelter A.S., Kozubowski L., Zyla T.R., Lew D.J., Interplay between septin organization, cell cycle and cell shape in yeast, J. Cell Sci., 2005, 118, 1617–1628 [CrossRef]

  • [101] Li C.R., Lee R.T., Wang Y.M., Zheng X.D., Wang Y., Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation, J. Cell Sci., 2007, 120, 1898–1907 [CrossRef]

  • [102] Sudbery P., Morphogenesis of a human fungal pathogen requires septin phosphorylation, Dev. Cell., 2007, 13, 315–316 [CrossRef]

  • [103] Gale C., Gerami-Nejad M., McClellan M., Vandoninck S., Longtine M.S., Berman J., Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells, Mol. Biol. Cell, 2001, 12, 3538–3549 [CrossRef]

  • [104] Martin S.W., Konopka J.B., Lipid raft polarization contributes to hyphal growth in Candida albicans, Eukaryot. Cell, 2004, 3, 675–684 [CrossRef]

  • [105] Wightman R., Bates S., Amornrrattanapan P., Sudbery P., In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization, J. Cell Biol., 2004, 164, 581–591 [CrossRef]

  • [106] Court H., Sudbery P., Regulation of Cdc42 GTPase activity in the formation of hyphae in Candida albicans, Mol. Biol. Cell, 2007, 18, 265–281 [CrossRef]

  • [107] Martin S.W., Konopka J.B., SUMO modification of septin-interacting proteins in Candida albicans, J. Biol. Chem., 2004, 279, 40861–40867 [CrossRef]

  • [108] Wendland J., Walther A., Ashbya gossypii: a model for fungal developmental biology, Nat. Rev. Microbiol., 2005, 3, 421–429 [CrossRef]

  • [109] Helfer H., Gladfelter A.S., AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells, Mol. Biol. Cell, 2006, 17, 4494–4512 [CrossRef]

  • [110] Kaufmann A., Philippsen P., Of bars and rings: Hof1-dependent cytokinesis in multiseptated hyphae of Ashbya gossypii, Mol. Cell. Biol., 2009, 29, 771–783 [CrossRef]

  • [111] Gladfelter A.S., Control of filamentous fungal cell shape by septins and formins, Nat. Rev. Microbiol., 2006, 4, 223–229 [CrossRef]

  • [112] DeMay B.S., Meseroll R.A., Occhipinti P., Gladfelter A.S., Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases, Mol. Biol. Cell, 2009, 20, 2311–2326 [CrossRef]

  • [113] Finley K.R., Berman J., Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis, Eukaryot. Cell, 2005, 4, 1697–1711 [CrossRef]

  • [114] Westfall P.J., Momany M., Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development, Mol. Biol. Cell, 2002, 13, 110–118 [CrossRef]

  • [115] Boyce K.J., Chang H., D’souza C.A., Kronstad J.W., An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize, Eukaryot. Cell, 2005, 4, 2044–2056 [CrossRef]

  • [116] Canovas D., Perez-Martin J., Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis, Fungal Genet. Biol., 2009, 46, 190–200 [CrossRef]

  • [117] Berlin A., Paoletti A., Chang F., Mid2p stabilizes septin rings during cytokinesis in fission yeast, J. Cell Biol., 2003, 160, 1083–1092 [CrossRef]

  • [118] Tasto J.J., Morrell J.L., Gould K.L., An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation, J. Cell Biol., 2003, 160, 1093–1103 [CrossRef]

  • [119] Dekker N., Speijer D., Grun C.H., van den Berg M., de Haan A., Hochstenbach F., Role of the α-glucanase Agn1p in fission-yeast cell separation, Mol. Biol. Cell, 2004, 15, 3903–3914 [CrossRef]

  • [120] Martin-Cuadrado A.B., Duenas E., Sipiczki M., Vazquez de Aldana C.R., del Rey F., The endo-β-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe, J. Cell Sci., 2003, 116, 1689–1698 [CrossRef]

  • [121] Martín-Cuadrado A.B., Morrell J.L., Konomi M., An H., Petit C., Osumi M., et al., Role of septins and the exocyst complex in the function of hydrolytic enzymes responsible for fission yeast cell separation, Mol. Biol. Cell, 2005, 16, 4867–4881 [CrossRef]

  • [122] Petit C.S., Mehta S., Roberts R.H., Gould K.L., Ace2p contributes to fission yeast septin ring assembly by regulating mid2+ expression, J. Cell Sci., 2005, 118, 5731–5742 [CrossRef]

  • [123] Dong Z., Ferger B., Paterna J.C., Vogel D., Furler S., Osinde M., et al., Dopamine-dependent neurodegeneration in rats induced by viral vectormediated overexpression of the parkin target protein, CDCrel-1, Proc. Natl. Acad. Sci. USA, 2003, 100, 12438–12443

  • [124] Kinoshita A., Kinoshita M., Akiyama H., Tomimoto H., Akiguchi I., Kumar S., et al., Identification of septins in neurofibrillary tangles in Alzheimer’s disease, Am. J. Pathol., 1998, 153, 1551–1560

  • [125] Kuhlenbaumer G., Hannibal M.C., Nelis E., Schirmacher A., Verpoorten N., Meuleman J., et al., Mutations in SEPT9 cause hereditary neuralgic amyotrophy, Nat. Genet., 2005, 37, 1044–1046 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rosa R. Mouriño-Pérez
Fungal Biology Reviews, 2013, Volume 27, Number 1, Page 1
Praveen Rao Juvvadi, Jarrod R Fortwendel, Luise E Rogg, and William J Steinbach
Biochemical and Biophysical Research Communications, 2011, Volume 405, Number 2, Page 238

Comments (0)

Please log in or register to comment.