Jump to ContentJump to Main Navigation

Open Life Sciences

formerly Central European Journal of Biology

1 Issue per year

IMPACT FACTOR increased in 2014: 0.710
5-year IMPACT FACTOR: 0.782

SCImago Journal Rank (SJR) 2014: 0.274
Source Normalized Impact per Paper (SNIP) 2014: 0.518
Impact per Publication (IPP) 2014: 0.773

Open Access


Superoxide dismutase mRNA and protein level in human colorectal cancer

1Chair and Department of Biochemistry, Warsaw Medical University, 02-097, Warsaw, Poland

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 5, Issue 5, Pages 590–599, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-010-0054-9, August 2010

Publication History

Published Online:


Impairments of antioxidant enzyme expression are often concomitant with the onset of cancer. Due to epigenetic factors causing an inflammatory state the gastrointestinal tract can become exposed to reactive oxygen species. The purpose of our work was to evaluate mRNA and protein levels of superoxide dismutase isoenzymes in human colorectal adenocarcinoma due to its clinical advancement, and in colorectal cancer liver metastases. Evaluation of SOD expression in regard to CRC advancement, seems useful for clinical applications due to different tumor cells sensitivity to reactive oxygen species based treatment. Studies were conducted on a group of 27 patients: 15 diagnosed with colorectal adenocarcinoma and 12 diagnosed with colorectal cancer liver metastases. The mRNA level was determined by RT-PCR, and protein level by Western blotting. We observed significant (P≤0.05) changes of mRNA and protein level of SOD isoenzymes in subsequent stages of colorectal adenocarcinoma advancement and in colorectal cancer liver metastases. Differences in mRNA and protein level of SOD isoenzymes in colorectal adenocarcinoma and its liver metastases indicates that SOD participate in adaptation of tumor cells to oxidative stress, and maintain certain level of ROS, necessary for appropriate cell proliferation. Expression of superoxide dismutase isoenzymes seems to be regulated not only at transcriptional level, but also posttranscriptional.

Keywords: SOD isoenzymes; Expression; Oxidative stress; Colorectal cancer; Metastases

  • [1] Benson A.B. 3rd, Epidemiology, disease progression, and economic burden of colorectal cancer, J. Manag. Care Pharm., 2007, 13, S5–S18

  • [2] Ballinger AB., Anggiansah C., Colorectal cancer, BMJ, 2007, 335, 715–718 http://dx.doi.org/10.1136/bmj.39321.527384.BE [CrossRef]

  • [3] Soreide K., Janssen EA., Soiland H., Korner H., Baak J.P., Microsatellite instability in colorectal cancer, Br. J. Surg., 2006, 93, 395–406 http://dx.doi.org/10.1002/bjs.5328 [CrossRef]

  • [4] Thibodeau S.N., Bren G., Schaid D., Microsatellite instability in cancer of the proximal colon, Science, 1993, 260, 816–819 http://dx.doi.org/10.1126/science.8484122 [CrossRef]

  • [5] Worthley D.L., Whitehall V.L., Spring K.J., Leggett B.A., Colorectal carcinogenesis: road maps to cancer, World J. Gastroenterol., 2007, 13, 3784–3791

  • [6] Grady W.M., Genomic instability and colon cancer, Cancer Metastasis Rev., 2004, 23, 11–27 http://dx.doi.org/10.1023/A:1025861527711 [CrossRef]

  • [7] Hampel H., Frankel W.L., Martin E., Arnold M., Khanduja K., Kuebler P., Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer), N. Engl. J. Med., 2005, 352, 1851–1860 http://dx.doi.org/10.1056/NEJMoa043146 [CrossRef]

  • [8] Hoeijmakers J.H., Genome maintenance mechanisms for preventing cancer, Nature, 2001, 411, 366–374 http://dx.doi.org/10.1038/35077232 [CrossRef]

  • [9] Hsu S.M., Chen Y.C., Jiang M.C., 17 beta-estradiol inhibits tumor necrosis factor-alpha-induced nuclear factor-kappa B activation by increasing nuclear factor-kappa B p105 level in MCF-7 breast cancer cells, Biochem. Biophys. Res. Commun., 2000, 279, 7–52 http://dx.doi.org/10.1006/bbrc.2000.3891 [CrossRef]

  • [10] Jass J.R., Whitehall V.L., Young J., Leggett B.A., Emerging concepts in colorectal neoplasia, Gastroenterology, 2002, 123, 862–876 http://dx.doi.org/10.1053/gast.2002.35392 [CrossRef]

  • [11] Kawanishi S., Hiraku Y., Oikawa S., Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging, Mutat. Res., 2001, 488, 65–76 http://dx.doi.org/10.1016/S1383-5742(00)00059-4 [CrossRef]

  • [12] Williams G.M., Jeffrey A.M., Oxidative DNA damage: endogenous and chemically induced, Regul. Toxicol. Pharmacol., 2000, 32, 283–292 http://dx.doi.org/10.1006/rtph.2000.1433 [CrossRef]

  • [13] Cheng K.C., Cahill D.S., Kasai H., Nishimura S., Loeb L.A., 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions, J. Biol. Chem., 1992, 267, 166–172

  • [14] Fridovich I., Superoxide anion radical (O2-), superoxide dismutases, and related matters, J. Biol. Chem., 1997, 272, 18515–18517 http://dx.doi.org/10.1074/jbc.272.30.18515 [CrossRef]

  • [15] Zelko I.N., Mariani T.J., Folz R.J., Superoxide dismutase multigene family: A comparison of the Cu,ZnSOD (sod1), Mn-SOD (sod2), and EC-SOD (sod3) gene structures, evolution, and expression, Free Radic. Biol. Med., 2002, 33, 337–349 http://dx.doi.org/10.1016/S0891-5849(02)00905-X [CrossRef]

  • [16] Oberley L.W., Buettner G.R., Role of Superoxide Dismutase in Cancer: A Review, Cancer Res., 1979, 39, 1141–1149

  • [17] Nicco C., Laurent A., Chereau C., Weill B., Batteux F., Differential modulation of normal and tumor cell proliferation by reactive oxygen species, Biomed. Pharmacother., 2005, 59, 169–174 http://dx.doi.org/10.1016/j.biopha.2005.03.009 [CrossRef]

  • [18] Van Driel B.E., Lyon H., Hoogenraad D.C., Anten S., Hansen U., Van Noorden CJ., Expression of CuZn- and Mn-superoxide dismutase in human colorectal neoplasms, Free Radic. Biol. Med., 1997, 23, 435–444 http://dx.doi.org/10.1016/S0891-5849(97)00102-0 [CrossRef]

  • [19] Janssen A.M., Bosman C.B., Kruidenier L., Griffioen G., Lamers C.B., van Krieken J.H., et al., Superoxide dismutases in the human colorectal cancer sequence, J. Cancer Res. Clin. Oncol., 1999, 125, 327–335 http://dx.doi.org/10.1007/s004320050282 [CrossRef]

  • [20] Devi G.S., Prasad M.H., Saraswathi I., Raghu D., Rao D.N., Reddy P.P., Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias, Clin. Chim. Acta, 2000, 293, 53–62 http://dx.doi.org/10.1016/S0009-8981(99)00222-3 [CrossRef]

  • [21] Hileman E.O., Liu J., Albitar M., Keating M.J., Huang P., Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity, Cancer Chemother. Pharmacol., 2004, 53, 209–219 http://dx.doi.org/10.1007/s00280-003-0726-5 [CrossRef]

  • [22] Santiard D., Inactivation of Cu,Zn-superoxide dismutase by free radicals derived from ethanol metabolism: a gamma radiolysis study, Free Radic. Biol. Med., 1995, 19, 121–127 http://dx.doi.org/10.1016/0891-5849(95)00008-L [CrossRef]

  • [23] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275

  • [24] Wang T., Zhang X., Li J.J., The role of NF-kappaB in the regulation of cell stress responses, Int. Immunopharmacol., 2002, 2, 1509–1520 http://dx.doi.org/10.1016/S1567-5769(02)00058-9 [CrossRef]

  • [25] Skrzycki M., Czeczot H., Expression of superoxide dismutase genes in oxidative stress conditions, Post. Biol. Kom., 2004, 31, 81–92, (in Polish) http://dx.doi.org/10.1016/S0925-5214(03)00134-0 [CrossRef]

  • [26] Loeb L.A., Mutator phenotype may be required for multistage carcinogenesis, Cancer Res., 1991, 51, 3075–3079

  • [27] Visner G.A., Dougall W.C., Wilson J.M., Burr I.A., Nick H.S., Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response, J. Biol. Chem., 1990, 265, 2856–2864

  • [28] Wong G.H.W., Goeddel D.V., Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism, Science (Washington DC), 1988, 242, 941–944 http://dx.doi.org/10.1126/science.3263703 [CrossRef]

  • [29] Skrzydlewska E., Sulkowski S., Koda M., Zalewski B., Kanczuga-Koda L., Sulkowska M., Lipid peroxidation and antioxidant status in colorectal cancer, World J. Gastroenterol., 2005, 11, 403–406

  • [30] Nishimura H., Sanaka T., Nihei H., Nishikawa M., Aikawa E., Mechanism of elevated local oxidant stress in early anti-glomerular basement membrane nephritis: an evaluation of oxidant production and superoxide dismutase expression, Nippon Jinzo Gakkai Shi, 1996, 38, 441–448

  • [31] Ahlemeyer B., Bauerbach E., Plath M., Steuber M., Heers C., Tegtmeier F., et al., Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level, Free Radic. Biol. Med., 2001, 30, 1067–1077 http://dx.doi.org/10.1016/S0891-5849(01)00495-6 [CrossRef]

  • [32] Monje M.L., Chatten-Brown J., Hye S.E., Raley-Susman K.M., Free radicals are involved in the damage to protein synthesis after anoxia/aglycemia and NMDA exposure, Brain Res., 2000, 28, 172–182 http://dx.doi.org/10.1016/S0006-8993(99)02404-X [CrossRef]

  • [33] Niu C.S., Chang C.K., Lin L.S., Jou S.B., Kuo D.H., Liao S.S., et al., Modification of superoxide dismutase (SOD) mRNA and activity by a transient hypoxic stress in cultured glial cells, Neurosci. Lett., 1998, 251, 145–148 http://dx.doi.org/10.1016/S0304-3940(98)00506-0 [CrossRef]

  • [34] Tsan M.F., White J.E., Shaffer J.B., Molecular basis for tumor necrosis factor-induced increase in pulmonary superoxide dismutase activities, Am. J. Physiol., 1990, 259, L506–L512

  • [35] Santillo M., Mondola P., Serù R., Annella T., Cassano S., Ciullo I., et al., Opposing functions of Ki- and Ha-Ras genes in the regulation of redox signals, Curr. Biol., 2001, 11, 614–619 http://dx.doi.org/10.1016/S0960-9822(01)00159-2 [CrossRef]

  • [36] Antunes F., Cadenas E., Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state, Free Radic. Biol. Med., 2001, 30, 1008–1018 http://dx.doi.org/10.1016/S0891-5849(01)00493-2 [CrossRef]

  • [37] Suresh A., Guedez L., Moreb J., Zucali J., Overexpression of manganese superoxide dismutase promotes survival in cell lines after doxorubicin treatment, Br. J. Haematol., 2003, 120, 457–463 http://dx.doi.org/10.1046/j.1365-2141.2003.04074.x [CrossRef]

  • [38] StClair D., Zhao Y., Chaiswing L., Oberley T., Modulation of skin tumorigenesis by SOD, Biomed. Pharmacother., 2005, 59, 209–214 http://dx.doi.org/10.1016/j.biopha.2005.03.004 [CrossRef]

  • [39] Oberley L.W., Mechanism of the tumor suppresive effect of MnSOD overexpression, Biomed. Pharmacother., 2005, 59, 143–148 http://dx.doi.org/10.1016/j.biopha.2005.03.006 [CrossRef]

  • [40] Dominguez A., Modifying superoxide dismutase for improved biopharmaceutical properties, Biotecnologia Aplicada, 2006, 23, 17–21

  • [41] Szatrowski T.P., Nathan C.F., Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res., 1991, 51, 794–798

  • [42] Golab J., Nowis D., Skrzycki M., Czeczot H., Baranczyk-Kuzma A., Wilczynski GM, et al., Antitumor effects of photodynamic therapy are potentiated by 2-methoxyestradiol — a superoxide dismutase inhibitor, J. Biol. Chem., 2003, 278, 407–414 http://dx.doi.org/10.1074/jbc.M209125200

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Saiful Karsani, Nor Saihen, Rosnah Zain, Sok-Ching Cheong, and Mariati Abdul Rahman
Proteome Science, 2014, Volume 12, Number 1, Page 3
Michał Skrzycki and Hanna Czeczot
Journal of Receptors and Signal Transduction, 2013, Volume 33, Number 5, Page 313

Comments (0)

Please log in or register to comment.