Jump to ContentJump to Main Navigation

Open Life Sciences

formerly Central European Journal of Biology

1 Issue per year


IMPACT FACTOR increased in 2014: 0.710
5-year IMPACT FACTOR: 0.782

SCImago Journal Rank (SJR): 0.263
Source Normalized Impact per Paper (SNIP): 0.626

Open Access
VolumeIssuePage

Issues

Infectious disease — a genetic view

1Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01, Kladno, Czech Republic

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 6, Issue 2, Pages 131–144, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-011-0003-2, February 2011

Publication History

Published Online:
2011-02-04

Abstract

Genetic analysis of resistance to infectious disease reveals many important cues that have led to new insights into the interaction between pathogen and host. This knowledge might help with a better prognosis for diseases, and to the development of novel therapeutics. This review focuses on genes and loci that control susceptibility to diseases with an important epidemiologic impact, such as AIDS, hepatitis B, gastritis and peptic ulcer, tuberculosis, leprosy, malaria, schistosomiasis and leishmaniasis. New perspectives for the integration of human and mouse genetics that contribute greatly to our understanding of regulatory mechanisms in health and disease, are also discussed.

Keywords: Infectious disease; human; Susceptibility genes; Controlling loci; mouse model

  • [1] Ehrenstein M.R., Notley C.A., The importance of natural IgM: scavenger, protector and regulator, Nat. Rev. Immunol., 2010, 10, 778–786 http://dx.doi.org/10.1038/nri2849

  • [2] Zhong H., Yang X., Kaplan L.M., Molony C., Schadt E.E., Integrating pathway analysis and genetics of gene expression for genome-wide association studies, Am. J. Hum. Genet., 2010, 86, 581–591 http://dx.doi.org/10.1016/j.ajhg.2010.02.020

  • [3] Lipoldová M., Demant P., Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis, Nat. Rev. Genet., 2006, 7, 294–305 http://dx.doi.org/10.1038/nrg1832

  • [4] Haagmans B.L., Andeweg A.C., Osterhaus A.D., The application of genomics to emerging zoonotic viral diseases, PLoS Pathog., 2009, 5, e1000557 http://dx.doi.org/10.1371/journal.ppat.1000557

  • [5] Cooke G.S., Hill A.V., Genetics of susceptibility to human infectious disease, Nat. Rev. Genet., 2001, 2, 967–977 http://dx.doi.org/10.1038/35103577

  • [6] Thursz M.R., Kwiatkowski D., Allsopp C.E., Greenwood B.M., Thomas H.C., Hill A.V., Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia, N. Engl. J. Med., 1995, 332, 1065–1069 http://dx.doi.org/10.1056/NEJM199504203321604

  • [7] Turner M.W., The role of mannose-binding lectin in health and disease, Mol. Immunol., 2003, 40, 423–429 http://dx.doi.org/10.1016/S0161-5890(03)00155-X

  • [8] Thomas H.C., Foster G.R., Sumiya M., McIntosh D., Jack D.L., Turner M.W., et al., Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection, Lancet, 1996, 348, 1417–1419 http://dx.doi.org/10.1016/S0140-6736(96)05409-8

  • [9] Blackwell J.M., Black G.F., Peacock C.S., Miller E.N., Sibthorpe D., Gnananandha D., et al., Immunogenetics of leishmanial and mycobacterial infections: the Belem Family Study, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1997, 352, 1331–1345 http://dx.doi.org/10.1098/rstb.1997.0118

  • [10] Chen D.Q., Zeng Y., Zhou J., Yang L., Jiang S., Huang J.D., et al., Association of candidate susceptible loci with chronic infection with hepatitis B virus in a Chinese population, J. Med. Virol., 2010, 82, 371–378 http://dx.doi.org/10.1002/jmv.21716

  • [11] Blackwell J.M., Goswami T., Evans C.A., Sibthorpe D., Papo N., White J.K., et al., SLC11A1 (formerly NRAMP1) and disease resistance, Cell. Microbiol., 2001, 3, 773–784 http://dx.doi.org/10.1046/j.1462-5822.2001.00150.x

  • [12] Lykouras D., Sampsonas F., Kaparianos A., Karkoulias K., Tsoukalas G., Spiropoulos K., Human genes in TB infection: their role in immune response, Monaldi Arch. Chest. Dis., 2008, 69, 24–31

  • [13] McDermid J.M., Prentice A.M., Iron and infection: effects of host iron status and the iron-regulatory genes haptoglobin and NRAMP1 (SLC11A1) on host-pathogen interactions in tuberculosis and HIV, Clin. Sci. (Lond.), 2006, 110, 503–524 http://dx.doi.org/10.1042/CS20050273

  • [14] Williams T.N., Red blood cell defects and malaria, Mol. Biochem. Parasitol., 2006, 149, 121–127 http://dx.doi.org/10.1016/j.molbiopara.2006.05.007

  • [15] Lipoldová M., Genetic control of susceptibility to human infectious diseases., In: Jonák J., Jonák J. Jr, (Eds.), Molecular Biology and Genetics XII, Institute of Molecular Genetics, Academy of Sciences, Prague, Czech Republic, 2006, 91–104

  • [16] Willyard C., Researchers come together to study natural HIV resistance, Nat. Med., 2009, 15, 1233 http://dx.doi.org/10.1038/nm1109-1233

  • [17] Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., et al., Identification of a major co-receptor for primary isolates of HIV-1, Nature, 1996, 381, 661–666 http://dx.doi.org/10.1038/381661a0

  • [18] Liu R., Paxton W.A., Choe S., Ceradini D., Martin S.R., Horuk R., et al., Homozygous defect in HIV- 1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection, Cell, 1996, 86, 367–377 http://dx.doi.org/10.1016/S0092-8674(00)80110-5

  • [19] Parczewski M., Leszczyszyn-Pynka M., Kaczmarczyk M., Adler G., Binczak-Kuleta A., Loniewska B., et al., Sequence variants of chemokine receptor genes and susceptibility to HIV-1 infection, J. Appl. Genet., 2009, 50, 159–166 http://dx.doi.org/10.1007/BF03195668

  • [20] Verma R., Gupta R.B., Singh K., Bhasin R., Anand Shukla A., Chauhan S.S., et al., Distribution of CCR5delta32, CCR2-64I and SDF1-3’A and plasma levels of SDF-1 in HIV-1 seronegative North Indians, J. Clin. Virol., 2007, 38, 198–203 http://dx.doi.org/10.1016/j.jcv.2006.12.006

  • [21] Kaslow R.A., Carrington M., Apple R., Park L., Munoz A., Saah A.J., et al., Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection, Nat. Med., 1996, 2, 405–411 http://dx.doi.org/10.1038/nm0496-405

  • [22] Kiprov D.D., Sheppard H.W., Hanson C.V., Alloimmunization to prevent AIDS?, Science, 1994, 263, 737–738 http://dx.doi.org/10.1126/science.8303282

  • [23] Fowke K.R., Nagelkerke N.J., Kimani J., Simonsen J.N., Anzala A.O., Bwayo J.J., et al., Resistance to HIV-1 infection among persistently seronegative prostitutes in Nairobi, Kenya, Lancet, 1996, 348, 1347–1351 http://dx.doi.org/10.1016/S0140-6736(95)12269-2

  • [24] Mittleman B.B., Shearer G.M., Mother-toinfant transmission of HIV type 1: role of major histocompatibility antigen differences, AIDS Res. Hum. Retroviruses, 1996, 12, 1397–1400 http://dx.doi.org/10.1089/aid.1996.12.1397

  • [25] Hardie R.A., Knight E., Bruneau B., Semeniuk C., Gill K., Nagelkerke N., et al., A common human leucocyte antigen-DP genotype is associated with resistance to HIV-1 infection in Kenyan sex workers, AIDS, 2008, 22, 2038–2042 http://dx.doi.org/10.1097/QAD.0b013e328311d1a0

  • [26] Delanghe J.R., Langlois M.R., Boelaert J.R., Van Acker J., Van Wanzeele F., van der Groen G., et al., Haptoglobin polymorphism, iron metabolism and mortality in HIV infection, AIDS, 1998, 12, 1027–1032 http://dx.doi.org/10.1097/00002030-199809000-00009

  • [27] Thursz M.R., Host genetic factors influencing the outcome of hepatitis, J. Viral Hepat., 1997, 4, 215–220 http://dx.doi.org/10.1046/j.1365-2893.1997.00052.x

  • [28] Frodsham A.J., Zhang L., Dumpis U., Taib N.A., Best S., Durham A., et al., Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence, Proc. Natl. Acad. Sci. USA, 2006, 103, 9148–9153 http://dx.doi.org/10.1073/pnas.0602800103

  • [29] Falush D., Wirth T., Linz B., Pritchard J.K., Stephens M., Kidd M., et al., Traces of human migrations in Helicobacter pylori populations, Science, 2003, 299, 1582–1585 http://dx.doi.org/10.1126/science.1080857

  • [30] Moodley Y., Linz B., Helicobacter pylori Sequences Reflect Past Human Migrations, Genome Dyn., 2009, 6, 62–74 http://dx.doi.org/10.1159/000235763

  • [31] Malaty H.M., Evans D.G., Evans D.J. Jr., Graham D.Y., Helicobacter pylori in Hispanics: comparison with blacks and whites of similar age and socioeconomic class, Gastroenterology, 1992, 103, 813–816

  • [32] Gonzalez C.A., Sala N., Capella G., Genetic susceptibility and gastric cancer risk, Int. J. Cancer, 2002, 100, 249–260 http://dx.doi.org/10.1002/ijc.10466

  • [33] Rosenstiel P., Hellmig S., Hampe J., Ott S., Till A., Fischbach W., et al., Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of Helicobacter pylori infection, Cell Microbiol., 2006, 8, 1188–1198 http://dx.doi.org/10.1111/j.1462-5822.2006.00701.x

  • [34] Aird I., Bentall H.H., Mehigan J.A., Roberts J.A., The blood groups in relation to peptic ulceration and carcinoma of colon, rectum, breast, and bronchus; an association between the ABO groups and peptic ulceration, Br. Med. J., 1954, 2, 315–321 http://dx.doi.org/10.1136/bmj.2.4883.315

  • [35] Henry S., Oriol R., Samuelsson B., Lewis histoblood group system and associated secretory phenotypes, Vox. Sang., 1995, 69, 166–182 http://dx.doi.org/10.1111/j.1423-0410.1995.tb02591.x

  • [36] Boren T., Falk P., Roth K.A., Larson G., Normark S., Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens, Science, 1993, 262, 1892–1895 http://dx.doi.org/10.1126/science.8018146

  • [37] Murray C.J., Styblo K., Rouillon A., Tuberculosis in developing countries: burden, intervention and cost, Bull. Int. Union Tuberc. Lung Dis., 1990, 65, 6–24

  • [38] Corbett E.L., Watt C.J., Walker N., Maher D., Williams B.G., Raviglione M.C., et al., The growing burden of tuberculosis: global trends and interactions with the HIV epidemic, Arch. Intern. Med., 2003, 163, 1009–1021 http://dx.doi.org/10.1001/archinte.163.9.1009

  • [39] Jarosikova T., Sow O.Y., Traore S., Krest’anpol M., Kubin M., Bruckova M., Detection of serum antibodies in tuberculosis patients, Cent. Eur. J. Public Health, 1994, 2, 60–61

  • [40] Doffinger R., Patel S.Y., Kumararatne D.S., Host genetic factors and mycobacterial infections: lessons from single gene disorders affecting innate and adaptive immunity, Microb. Infect., 2006, 8, 1141–1150 http://dx.doi.org/10.1016/j.micinf.2005.10.028

  • [41] Jarosikova T., Experimental mycobacterial infections in immunodeficient host, Stud. Pneumol. Phtiseol., 1993, 53, 7

  • [42] El-Sadr W.M., Tsiouris S.J., HIV-associated tuberculosis: diagnostic and treatment challenges, Semin. Respir. Crit. Care Med., 2008, 29, 525–531 http://dx.doi.org/10.1055/s-0028-1085703

  • [43] Diehl K., von Verscheur O., Der Erb einfluss bei den Tuberculose (The genetic influence on the tuberculosis), Gustav Fischer, Jena, 1936, (in German)

  • [44] Thye T., Vannberg F.O., Wong S.H., Owusu-Dabo E., Osei I., Gyapong J., et al., Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2, Nat. Genet., 2010, 42, 739–741 http://dx.doi.org/10.1038/ng.639

  • [45] Alcais A., Fieschi C., Abel L., Casanova J.L., Tuberculosis in children and adults: two distinct genetic diseases, J. Exp. Med., 2005, 202, 1617–1621 http://dx.doi.org/10.1084/jem.20052302

  • [46] Leandro A.C., Rocha M.A., Cardoso C.S., Bonecini-Almeida M.G., Genetic polymorphisms in vitamin D receptor, vitamin D-binding protein, Toll-like receptor 2, nitric oxide synthase 2, and interferon-gamma genes and its association with susceptibility to tuberculosis, Braz. J. Med. Biol. Res., 2009, 42, 312–322 http://dx.doi.org/10.1590/S0100-879X2009000400002

  • [47] Tosh K., Campbell S.J., Fielding K., Sillah J., Bah B., Gustafson P., et al., Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa, Proc. Natl. Acad. Sci. USA, 2006, 103, 10364–10368 http://dx.doi.org/10.1073/pnas.0603340103

  • [48] van de Vosse E., van Dissel J.T., Ottenhoff T.H., Genetic deficiencies of innate immune signalling in human infectious disease, Lancet Infect. Dis., 2009, 9, 688–698 http://dx.doi.org/10.1016/S1473-3099(09)70255-5

  • [49] Yim J.J., Selvaraj P., Genetic susceptibility in tuberculosis, Respirology, 2010, 15, 241–256 http://dx.doi.org/10.1111/j.1440-1843.2009.01690.x

  • [50] Matheson C.D., Vernon K.K., Lahti A., Fratpietro R., Spigelman M., Gibson S., et al., Molecular exploration of the first-century Tomb of the Shroud in Akeldama, Jerusalem, PLoS One, 2009, 4, e8319 http://dx.doi.org/10.1371/journal.pone.0008319

  • [51] Blackwell J.M., Jamieson S.E., Burgner D., HLA and infectious diseases, Clin. Microbiol. Rev., 2009, 22, 370–385 http://dx.doi.org/10.1128/CMR.00048-08

  • [52] Vejbaesya S., Mahaisavariya P., Luangtrakool P., Sermduangprateep C., TNF alpha and NRAMP1 polymorphisms in leprosy, J. Med. Assoc. Thai., 2007, 90, 1188–1192

  • [53] Bochud P.Y., Hawn T.R., Siddiqui M.R., Saunderson P., Britton S., Abraham I., et al., Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy, J. Infect. Dis., 2008, 197, 253–261 http://dx.doi.org/10.1086/524688

  • [54] Bochud P.Y., Sinsimer D., Aderem A., Siddiqui M.R., Saunderson P., Britton S., et al., Polymorphisms in Toll-like receptor 4 (TLR4) are associated with protection against leprosy, Eur. J. Clin. Microbiol. Infect. Dis., 2009, 28, 1055–1065 http://dx.doi.org/10.1007/s10096-009-0746-0

  • [55] Stienstra Y., van der Werf T.S., Oosterom E., Nolte I.M., van der Graaf W.T., Etuaful S., et al., Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism, Genes. Immun., 2006, 7, 185–189 http://dx.doi.org/10.1038/sj.gene.6364281

  • [56] Roy S., Frodsham A., Saha B., Hazra S.K., Mascie-Taylor C.G., Hill A.V., Association of vitamin D receptor genotype with leprosy type, J. Infect. Dis., 1999, 179, 187–191 http://dx.doi.org/10.1086/314536

  • [57] Siddiqui M.R., Meisner S., Tosh K., Balakrishnan K., Ghei S., Fisher S.E., et al., A major susceptibility locus for leprosy in India maps to chromosome 10p13, Nat. Genet., 2001, 27, 439–441 http://dx.doi.org/10.1038/86958

  • [58] Tosh K., Meisner S., Siddiqui M.R., Balakrishnan K., Ghei S., Golding M., et al., A region of chromosome 20 is linked to leprosy susceptibility in a South Indian population, J. Infect. Dis., 2002, 186, 1190–1193 http://dx.doi.org/10.1086/343806

  • [59] Mira M.T., Alcais A., Van Thuc N., Thai V.H., Huong N.T., Ba N.N., et al., Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population, Nat. Genet., 2003, 33, 412–415 http://dx.doi.org/10.1038/ng1096

  • [60] Mira M.T., Alcais A., Nguyen V.T., Moraes M.O., Di Flumeri C., Vu H.T., et al., Susceptibility to leprosy is associated with PARK2 and PACRG, Nature, 2004, 427, 636–640 http://dx.doi.org/10.1038/nature02326

  • [61] Zhang F.R., Huang W., Chen S.M., Sun L.D., Liu H., Li Y., et al., Genomewide association study of leprosy, N. Engl. J. Med., 2009, 361, 2609–2618 http://dx.doi.org/10.1056/NEJMoa0903753

  • [62] Gyan B.A., Goka B., Cvetkovic J.T., Kurtzhals J.L., Adabayeri V., Perlmann H., et al., Allelic polymorphisms in the repeat and promoter regions of the interleukin-4 gene and malaria severity in Ghanaian children, Clin. Exp. Immunol., 2004, 138, 145–150 http://dx.doi.org/10.1111/j.1365-2249.2004.02590.x

  • [63] Allison A.C., Protection afforded by sickle-cell trait against subtertian malareal infection, Br. Med. J., 1954, 1, 290–294 http://dx.doi.org/10.1136/bmj.1.4857.290

  • [64] Allison A.C., Genetic control of resistance to human malaria, Curr. Opin. Immunol., 2009, 21, 499–505 http://dx.doi.org/10.1016/j.coi.2009.04.001

  • [65] Fortier A., Min-Oo G., Forbes J., Lam-Yuk-Tseung S., Gros P., Single gene effects in mouse models of host: pathogen interactions, J. Leukoc. Biol., 2005, 77, 868–877 http://dx.doi.org/10.1189/jlb.1004616

  • [66] Kwiatkowski D., Genetic susceptibility to malaria getting complex, Curr. Opin. Genet. Dev., 2000, 10, 320–324 http://dx.doi.org/10.1016/S0959-437X(00)00087-3

  • [67] Ayi K., Min-Oo G., Serghides L., Crockett M., Kirby-Allen M., Quirt I., et al., Pyruvate kinase deficiency and malaria, N. Engl. J. Med., 2008, 358, 1805–1810 http://dx.doi.org/10.1056/NEJMoa072464

  • [68] Mayer D.C., Cofie J., Jiang L., Hartl D.L., Tracy E., Kabat J., et al., Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocytebinding ligand, EBL-1, Proc. Natl. Acad. Sci. USA, 2009, 106, 5348–5352 http://dx.doi.org/10.1073/pnas.0900878106

  • [69] Scott B., Easteal S., A single-step assay for the Gerbich-negative allele of glycophorin C, Blood Cells Mol. Dis., 2008, 41, 1–4 http://dx.doi.org/10.1016/j.bcmd.2008.02.009

  • [70] Cavasini C.E., de Mattos L.C., Couto A.A., Couto V.S., Gollino Y., Moretti L.J., et al., Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon region, Malar. J., 2007, 6, 167 http://dx.doi.org/10.1186/1475-2875-6-167

  • [71] Pain A., Urban B.C., Kai O., Casals-Pascual C., Shafi J., Marsh K., et al., A non-sense mutation in Cd36 gene is associated with protection from severe malaria, Lancet, 2001, 357, 1502–1503 http://dx.doi.org/10.1016/S0140-6736(00)04662-6

  • [72] Troye-Blomberg M., Genetic regulation of malaria infection in humans, Chem. Immunol., 2002, 80, 243–252 http://dx.doi.org/10.1159/000058847

  • [73] McGuire W., Hill A.V., Allsopp C.E., Greenwood B.M., Kwiatkowski D., Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria, Nature, 1994, 371, 508–510 http://dx.doi.org/10.1038/371508a0

  • [74] Cooke G.S., Aucan C., Walley A.J., Segal S., Greenwood B.M., Kwiatkowski D.P., et al., Association of Fcgamma receptor IIa (CD32) polymorphism with severe malaria in West Africa, Am. J. Trop. Med. Hyg., 2003, 69, 565–568

  • [75] Naka I., Patarapotikul J., Hananantachai H., Tokunaga K., Tsuchiya N., Ohashi J., IFNGR1 polymorphisms in Thai malaria patients, Infect. Genet. Evol., 2009, 9, 1406–1409 http://dx.doi.org/10.1016/j.meegid.2009.08.004

  • [76] Marquet S., Doumbo O., Cabantous S., Poudiougou B., Argiro L., Safeukui I., et al., A functional promoter variant in IL12B predisposes to cerebral malaria, Hum. Mol. Genet., 2008, 17, 2190–2195 http://dx.doi.org/10.1093/hmg/ddn118

  • [77] Nahrevanian H., Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection, Braz. J. Infect. Dis., 2006, 10, 283–292 http://dx.doi.org/10.1590/S1413-86702006000400014

  • [78] Chakrabarti A., Kelkar D.A., Chattopadhyay A., Spectrin organization and dynamics: new insights, Biosci. Rep., 2006, 26, 369–386 http://dx.doi.org/10.1007/s10540-006-9024-x

  • [79] Dhermy D., Schrevel J., Lecomte M.C., Spectrinbased skeleton in red blood cells and malaria, Curr. Opin. Hematol., 2007, 14, 198–202 http://dx.doi.org/10.1097/MOH.0b013e3280d21afd

  • [80] Verra F., Mangano V.D., Modiano D., Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies, Parasite Immunol., 2009, 31, 234–253 http://dx.doi.org/10.1111/j.1365-3024.2009.01106.x

  • [81] Nagel R.L., Innate resistance to malaria: the intraerythrocytic cycle, Blood Cells, 1990, 16, 321–339

  • [82] Weatherall D.J., Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias, Nat. Rev. Genet., 2001, 2, 245–255 http://dx.doi.org/10.1038/35066048

  • [83] Cappellini M.D., Fiorelli G., Glucose-6-phosphate dehydrogenase deficiency, Lancet, 2008, 371, 64–74 http://dx.doi.org/10.1016/S0140-6736(08)60073-2

  • [84] Min-Oo G., Fortin A., Tam M.F., Nantel A., Stevenson M.M., Gros P., Pyruvate kinase deficiency in mice protects against malaria, Nat. Genet., 2003, 35, 357–362 http://dx.doi.org/10.1038/ng1260

  • [85] Durand P.M., Coetzer T.L., Pyruvate kinase deficiency in a South African kindred caused by a 1529A mutation in the PK-LR gene, S. Afr. Med. J., 2008, 98, 456–457

  • [86] Williams T.N., Red blood cell defects and malaria, Mol. Biochem. Parasitol., 2006, 149, 121–127 http://dx.doi.org/10.1016/j.molbiopara.2006.05.007

  • [87] Miller L.H., Mason S.J., Clyde D.F., McGinniss M.H., The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy, N. Engl. J. Med., 1976, 295, 302–304 http://dx.doi.org/10.1056/NEJM197608052950602

  • [88] Ryan J.R., Stoute J.A., Amon J., Dunton R.F., Mtalib R., Koros J., et al., Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya, Am. J. Trop. Med. Hyg., 2006, 75, 575–581

  • [89] Aidoo M., Lalvani A., Allsopp C.E., Plebanski M., Meisner S.J., Krausa P., et al., Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria, Lancet, 1995, 345, 1003–1007 http://dx.doi.org/10.1016/S0140-6736(95)90754-8

  • [90] May J., Lell B., Luty A.J., Meyer C.G., Kremsner P.G., HLA-DQB1*0501-restricted Th1 type immune responses to Plasmodium falciparum liver stage antigen 1 protect against malaria anemia and reinfections, J. Infect. Dis., 2001, 183, 168–172 http://dx.doi.org/10.1086/317642

  • [91] Dessein A., Chevillard C., Arnaud V., Hou X., Hamdoun A.A., Dessein H., et al., Variants of CTGF are associated with hepatic fibrosis in Chinese, Sudanese, and Brazilians infected with schistosomes, J. Exp. Med., 2009, 206, 2321–2328 http://dx.doi.org/10.1084/jem.20090383

  • [92] Marquet S., Abel L., Hillaire D., Dessein H., Kalil J., Feingold J., et al., Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33, Nat. Genet., 1996, 14, 181–184 http://dx.doi.org/10.1038/ng1096-181

  • [93] Dessein A., Kouriba B., Eboumbou C., Dessein H., Argiro L., Marquet S., et al., Interleukin-13 in the skin and interferon-gamma in the liver are key players in immune protection in human schistosomiasis, Immunol. Rev., 2004, 201, 180–190 http://dx.doi.org/10.1111/j.0105-2896.2004.00195.x

  • [94] Zinn-Justin A., Marquet S., Hillaire D., Dessein A., Abel L., Genome search for additional human loci controlling infection levels by Schistosoma mansoni, Am. J. Trop. Med. Hyg., 2001, 65, 754–758

  • [95] Kouriba B., Chevillard C., Bream J.H., Argiro L., Dessein H., Arnaud V., et al., Analysis of the 5q31-q33 locus shows an association between IL13-1055C/T IL-13-591A/G polymorphisms and Schistosoma haematobium infections, J. Immunol., 2005, 174, 6274–6281

  • [96] He H., Isnard A., Kouriba B., Cabantous S., Dessein A., Doumbo O., et al., A STAT6 gene polymorphism is associated with high infection levels in urinary schistosomiasis, Genes Immun., 2008, 9, 195–206 http://dx.doi.org/10.1038/gene.2008.2

  • [97] Kellina O.I., Differences in the sensitivity of inbred mice of different lines to Leishmania tropica major, Med. Parazitol. (Mosk.), 1973, 42, 279–285

  • [98] Bradley D.J., Kirkley J., Variation in susceptibility of mouse strains to Leishmania donovani infection, Trans. R. Soc. Trop. Med. Hyg., 1972, 66, 527–528 http://dx.doi.org/10.1016/0035-9203(72)90083-1

  • [99] Barbier D., Demenais F., Lefait J.F., David B., Blanc M., Hors J., et al., Susceptibility to human cutaneous leishmaniasis and HLA, Gm, Km markers, Tissue Antigens, 1987, 30, 63–67 http://dx.doi.org/10.1111/j.1399-0039.1987.tb01598.x

  • [100] Lara M.L., Layrisse Z., Scorza J.V., Garcia E., Stoikow Z., Granados J., et al., Immunogenetics of human American cutaneous leishmaniasis. Study of HLA haplotypes in 24 families from Venezuela, Hum. Immunol., 1991, 30, 129–135 http://dx.doi.org/10.1016/0198-8859(91)90081-J

  • [101] Cabrera M., Shaw M.A., Sharples C., Williams H., Castes M., Convit J., et al., Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis, J. Exp. Med., 1995, 182, 1259–1264 http://dx.doi.org/10.1084/jem.182.5.1259

  • [102] Peacock C.S., Sanjeevi C.B., Shaw M.A., Collins A., Campbell R.D., March R., et al., Genetic analysis of multicase families of visceral leishmaniasis in northeastern Brazil: no major role for class II or class III regions of HLA, Genes. Immun., 2002, 3, 350–358 http://dx.doi.org/10.1038/sj.gene.6363852

  • [103] Meddeb-Garnaoui A., Gritli S., Garbouj S., Ben Fadhel M., El Kares R., Mansour L., et al., Association analysis of HLA-class II and class III gene polymorphisms in the susceptibility to mediterranean visceral leishmaniasis, Hum. Immunol., 2001, 62, 509–517 http://dx.doi.org/10.1016/S0198-8859(01)00237-3

  • [104] Bucheton B., Abel L., El-Safi S., Kheir M.M., Pavek S., Lemainque A., et al., A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar, Am. J. Hum. Genet., 2003, 73, 1052–1060 http://dx.doi.org/10.1086/379084

  • [105] Mohamed H.S., Ibrahim M.E., Miller E.N., Peacock C.S., Khalil E.A., Cordell H.J., et al., Genetic susceptibility to visceral leishmaniasis in The Sudan: linkage and association with IL4 and IFNGR1, Genes. Immun., 2003, 4, 351–355 http://dx.doi.org/10.1038/sj.gene.6363977

  • [106] Sakthianandeswaren A., Foote S.J., Handman E., The role of host genetics in leishmaniasis, Trends Parasitol., 2009, 8, 383–391 http://dx.doi.org/10.1016/j.pt.2009.05.004

  • [107] Lander E.S., Schork N.J., Genetic dissection of complex traits, Science, 1994, 265, 2037–2048 http://dx.doi.org/10.1126/science.8091226

  • [108] DeBry R.W., Seldin M.F., Human/mouse homology relationships, Genomics, 1996, 33, 337–351 http://dx.doi.org/10.1006/geno.1996.0209

  • [109] Ala U., Piro R.M., Grassi E., Damasco C., Silengo L., Oti M., et al., Prediction of human disease genes by human-mouse conserved coexpression analysis, PLoS Comput. Biol., 2008, 4, e1000043 http://dx.doi.org/10.1371/journal.pcbi.1000043

  • [110] Pan H., Yan B.S., Rojas M., Shebzukhov Y.V., Zhou H., Kobzik L., et al., Ipr1 gene mediates innate immunity to tuberculosis, Nature, 2005, 434, 767–772 http://dx.doi.org/10.1038/nature03419

  • [111] Beebe A.M., Mauze S., Schork N.J., Coffman R.L., Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice, Immunity, 1997, 6, 551–557 http://dx.doi.org/10.1016/S1074-7613(00)80343-X

  • [112] Roberts L.J., Baldwin T.M., Curtis J.M., Handman E., Foote S.J., Resistance to Leishmania major is linked to the H2 region on chromosome 17 and to chromosome 9, J. Exp. Med., 1997, 185, 1705–1710 http://dx.doi.org/10.1084/jem.185.9.1705

  • [113] Roberts L.J., Baldwin T.M., Speed T.P., Handman E., Foote S.J., Chromosomes X, 9, and the H2 locus interact epistatically to control Leishmania major infection, Eur. J. Immunol., 1999, 29, 3047–3050 http://dx.doi.org/10.1002/(SICI)1521-4141(199909)29:09<3047::AID-IMMU3047>3.0.CO;2-L

  • [114] Howard J.G., Hale C., Chan-Liew W.L., Immunological regulation of experimental cutaneous leishmaniasis. 1. Immunogenetic aspects of susceptibility to Leishmania tropica in mice, Parasite Immunol., 1980, 2, 303–314 http://dx.doi.org/10.1111/j.1365-3024.1980.tb00061.x

  • [115] Mock B., Blackwell J., Hilgers J., Potter M., Nacy C., Genetic control of Leishmania major infection in congenic, recombinant inbred and F2 populations of mice, Eur. J. Immunogenet., 1993, 20, 335–348 http://dx.doi.org/10.1111/j.1744-313X.1993.tb00153.x

  • [116] Demant P., Lipoldová M., Svobodová M., Resistance to Leishmania major in mice, Science, 1996, 274, 1392–1393 http://dx.doi.org/10.1126/science.274.5291.1392

  • [117] Havelkova H., Badalova J., Svobodova M., Vojtikova J., Kurey I., Vladimirov V., et al., Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects, Genes Immun., 2006, 7, 220–233 http://dx.doi.org/10.1038/sj.gene.6364290

  • [118] Kurey I., Kobets T., Havelkova H., Slapnickova M., Quan L., Trtkova K., et al., Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection, Immunogenetics, 2009, 61, 619–633 http://dx.doi.org/10.1007/s00251-009-0392-9

  • [119] Lipoldová M., Svobodová M., Krulová M., Havelková H., Badalová J., Nohynková E., et al., Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes, Genes Immun., 2000, 1, 200–206 http://dx.doi.org/10.1038/sj.gene.6363660

  • [120] Vladimirov V., Badalová J., Svobodová M., Havelková H., Hart A.A., Blažková H., et al., Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice, Infect. Immun., 2003, 71, 2041–2046 http://dx.doi.org/10.1128/IAI.71.4.2041-2046.2003

  • [121] Lipoldová M., Svobodová M., Havelková H., Krulová M., Badalová J., Nohynková E., et al., Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis, Immunogenetics, 2002, 54, 174–183 http://dx.doi.org/10.1007/s00251-002-0439-7

  • [122] Sakthianandeswaren A., Curtis J.M., Elso C., Kumar B., Baldwin T.M., Lopaticki S., et al., Fine mapping of Leishmania major susceptibility Locus lmr2 and evidence of a role for Fli1 in disease and wound healing, Infect. Immun., 2010, 78, 2734–2744 http://dx.doi.org/10.1128/IAI.00126-10

  • [123] Gusareva E.S., Havelkova H., Blazkova H., Kosarova M., Kucera P., Kral V., et al., Mouse to human comparative genetics reveals a novel immunoglobulin E-controlling locus on Hsa8q12, Immunogenetics, 2009, 61, 15–25 http://dx.doi.org/10.1007/s00251-008-0343-x

  • [124] Nahrevanian H., Gholizadeh J., Farahmand M., Assmar M., Sharifi K., Ayatollahi Mousavi S.A., et al., Nitric oxide induction as a novel immunoepidemiological target in malaria-infected patients from endemic areas of the Islamic Republic of Iran, Scand. J. Clin. Lab. Invest., 2006, 66, 201–209 http://dx.doi.org/10.1080/00365510600565011

  • [125] Giovannoni L., TNFA locus is associated with beta degrees 39 thalassemia in Corsica and Sardinia, Eur. Cytokine Netw., 2008, 19, 196–203

  • [126] Badalová J., Svobodová M., Havelková H., Vladimirov V., Vojtíšková J., Engová J., et al., Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice, Genes Immun., 2002, 3, 187–195 http://dx.doi.org/10.1038/sj.gene.6363838

  • [127] Baguet A., Epler J., Wen K.W., Bix M., A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell biascontrolling quantitative trait locus, J. Exp. Med., 2004, 200, 1605–1612 http://dx.doi.org/10.1084/jem.20040334

  • [128] Demant P., Hart A.A., Recombinant congenic strains—a new tool for analyzing genetic traits determined by more than one gene, Immunogenetics, 1986, 24, 416–422 http://dx.doi.org/10.1007/BF00377961

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Elizabeth J. Glass, Sarah Crutchley, and Kirsty Jensen
Veterinary Immunology and Immunopathology, 2012, Volume 148, Number 1-2, Page 178

Comments (0)

Please log in or register to comment.