Jump to ContentJump to Main Navigation

Open Life Sciences

formerly Central European Journal of Biology

1 Issue per year

IMPACT FACTOR increased in 2014: 0.710
5-year IMPACT FACTOR: 0.782

SCImago Journal Rank (SJR) 2014: 0.274
Source Normalized Impact per Paper (SNIP) 2014: 0.518
Impact per Publication (IPP) 2014: 0.773

Open Access


Protective effects of glucosamine-kynurenic acid after compression-induced spinal cord injury in the rat

1Institute of Neurobiology, Slovak Academy of Sciences, 040 01, Košice, Slovak Republic

2Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726, Szeged, Hungary

3Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725, Szeged, Hungary

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 7, Issue 6, Pages 996–1004, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-012-0096-2, October 2012

Publication History

Published Online:


Kynurenic acid (KYNA), a metabolite of the essential amino acid L-tryptophan, is a broad spectrum antagonist of excitatory amino acid receptors, which have also anticonvulsant and neuroprotective properties. After spinal cord injury (SCI), excitotoxicity is considered to play a significant role in the processes of secondary tissue destruction in both grey and white matter of the spinal cord. In this study, we have tested the potential therapeutic effect of glucosamine-kynurenic acid, administered after experimental compression-induced SCI in the rat. Spinal application of glucosamine-kynurenic acid continually for 24 hr after experimental SCI resulted in improved motor function recovery, beginning from the first week of evaluation and continuing until the end of the study (4 weeks). After 4 weeks’ survival, quantitative morphometric analysis of the spinal cord showed that glucosamine-kynurenic acid treatment was associated with improved tissue preservation at the lesion site. These findings indicate that spinal application of glucosaminekynurenic acid is neuroprotective and improves the outcome even when administered after spinal trauma. Our results suggest that the treatments initiated in early posttraumatic period can alleviate secondary injury and improve the final outcome after SCI.

Keywords: Spinal cord injury; Excitotoxicity; NMDA receptor; Kynurenic acid

  • [1] Crowe M.J., Bresnahan J.C., Shuman S.L., Masters J.N., Beattie M.S., Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys, Nat. Med., 1997, 3, 73–76 http://dx.doi.org/10.1038/nm0197-73 [CrossRef]

  • [2] Tator C.H., Fehlings M.G., Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms, J. Neurosurg., 1991,75, 15–26 http://dx.doi.org/10.3171/jns.1991.75.1.0015 [CrossRef]

  • [3] Fitch M.T., Doller C., Combs C.K., Landreth G.E., Silver J., Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma, J. Neurosci., 1999, 19, 8182–8198

  • [4] Nelson E., Gertz S.D., Rennels M.L., Ducker T.B., Blaumanis O.R., Spinal cord injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis, Arch. Neurol., 1977, 34, 332–333 http://dx.doi.org/10.1001/archneur.1977.00500180026005 [CrossRef]

  • [5] Taoka Y., Okajima K., Spinal cord injury in the rat, Prog. Neurobiol., 1998, 56, 341–358 http://dx.doi.org/10.1016/S0301-0082(98)00049-5 [CrossRef]

  • [6] Liu X.Z., Xu X.M., Hu R., Du C., Zhang S.X., McDonald J.W., et al., Neuronal and glial apoptosis after traumatic spinal cord injury, J. Neurosci., 1997, 17, 5395–5406

  • [7] Tator C.H., Koyanagi I., Vascular mechanisms in the pathophysiology of human spinal cord injury, J. Neurosurg., 1997, 86, 483–492 [CrossRef]

  • [8] Balentine J.D., Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury, Lab. Invest., 1978, 39, 236–253

  • [9] Kwon B.K., Okon E., Hillyer J., Mann C., Baptiste D., Weaver L.C., et al., A systematic review of noninvasive pharmacologic neuroprotective treatments for acute spinal cord injury, J. Neurotrauma, 2011, 28, 1545–1588 http://dx.doi.org/10.1089/neu.2009.1149 [Web of Science] [CrossRef]

  • [10] Bracken M.B., Shepard M.J., Collins W.F., Holford T.R., Young W., Baskin D.S., et al., A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study, N. Engl. J. Med., 1990, 322, 1405–1411 http://dx.doi.org/10.1056/NEJM199005173222001 [CrossRef]

  • [11] Short D.J., El Masry W.S., Jones P.W., High dose methylprednisolone in the management of acute spinal cord injury — a systematic review from a clinical perspective, Spinal Cord, 2000, 38, 273–286 http://dx.doi.org/10.1038/sj.sc.3100986 [CrossRef]

  • [12] McAdoo D.J., Xu G.Y., Robak G., Hughes M.G., Changes in amino acid concentrations over time and space around an impact injury and their diffusion through the rat spinal cord, Exp. Neurol., 1999, 159, 538–544 http://dx.doi.org/10.1006/exnr.1999.7166 [CrossRef]

  • [13] Ikonomidou C., Turski L., Excitotoxicity and neurodegenerative diseases, Curr. Opin. Neurol., 1995, 8, 487–497 http://dx.doi.org/10.1097/00019052-199512000-00017 [CrossRef]

  • [14] Muir K.W., Lees K.R., Clinical experience with excitatory amino acid antagonist drugs, Stroke, 1995, 26, 503–513 http://dx.doi.org/10.1161/01.STR.26.3.503 [CrossRef]

  • [15] Stone T.W., Kynurenines in the CNS: from endogenous obscurity to therapeutic importance, Prog. Neurobiol., 2001, 64, 185–218 http://dx.doi.org/10.1016/S0301-0082(00)00032-0 [CrossRef]

  • [16] Birch P.J., Grossman C.J., Hayes A.G., Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor, Eur. J. Pharmacol., 1988, 154, 85–87 http://dx.doi.org/10.1016/0014-2999(88)90367-6 [CrossRef]

  • [17] Schwarcz R., Pellicciari R., Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities, J. Pharmacol. Exp. Ther., 2002, 303, 1–10 http://dx.doi.org/10.1124/jpet.102.034439 [CrossRef]

  • [18] Hilmas C., Pereira E.F., Alkondon M., Rassoulpour A., Schwarcz R., Albuquerque E.X., The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications, J. Neurosci., 2001, 21, 7463–7473

  • [19] Wang J., Zhao X., Zheng Y., Kong H., Lu G., Cai Z., et al., Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35, J. Biol. Chem., 2006, 281, 22021–22028 http://dx.doi.org/10.1074/jbc.M603503200 [CrossRef]

  • [20] Wrathall J.R., Bouzoukis J., Choiniere D., Effect of kynurenate on functional deficits resulting from traumatic spinal cord injury, Eur. J. Pharmacol., 1992, 218, 273–281 http://dx.doi.org/10.1016/0014-2999(92)90179-8 [CrossRef]

  • [21] Fuvesi J., Somlai C., Nemeth H., Varga H., Kis Z., Farkas T., et al., Comparative study on the effects of kynurenic acid and glucosamine-kynurenic acid, Pharmacol. Biochem. Behav., 2004, 77, 95–102 http://dx.doi.org/10.1016/j.pbb.2003.10.001 [CrossRef]

  • [22] Nemeth H., Toldi J., Vecsei L., Role of kynurenines in the central and peripheral nervous systems, Curr. Neurovasc. Res., 2005, 2, 249–260 http://dx.doi.org/10.2174/1567202054368326 [CrossRef]

  • [23] Vanicky I., Urdzikova L., Saganova K., Cizkova D., Galik J., A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat, J. Neurotrauma, 2001, 18, 1399–13407 http://dx.doi.org/10.1089/08977150152725687 [CrossRef]

  • [24] Basso D.M., Beattie M.S., Bresnahan J.C., A sensitive and reliable locomotor rating scale for open field testing in rats, J. Neurotrauma, 1995, 12, 1–21 http://dx.doi.org/10.1089/neu.1995.12.1 [CrossRef]

  • [25] Herzog A., Brosamle C., ’semifree-floating’ treatment: a simple and fast method to process consecutive sections for immunohistochemistry and neuronal tracing, J. Neurosci. Methods, 1997, 72, 57–63 http://dx.doi.org/10.1016/S0165-0270(96)00156-2 [CrossRef]

  • [26] Liu D., Thangnipon W., McAdoo D.J., Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord, Brain Res., 1991, 547, 344–348 http://dx.doi.org/10.1016/0006-8993(91)90984-4 [CrossRef]

  • [27] Painter S.C., Wum S.W., Faden A.I., Alteration in extracellular amino acids after traumatic spinal cord injury, Ann. Neurol., 1990, 27, 96–99 http://dx.doi.org/10.1002/ana.410270115 [CrossRef]

  • [28] Mody I., MacDonald J.F., NMDA receptordependent excitotoxicity: the role of intracellular Ca2+ release, Trends Pharmacol. Sci., 1995, 16, 356–359 http://dx.doi.org/10.1016/S0165-6147(00)89070-7 [CrossRef]

  • [29] Hall E.D., Springer J.E., Neuroprotection and acute spinal cord injury: a reappraisal, NeuroRx., 2004, 1, 80–100 http://dx.doi.org/10.1602/neurorx.1.1.80 [CrossRef]

  • [30] Robotka H., Németh H., Somlai C., Vécsei L., Toldi J., Systemically administered glucosaminekynurenic acid, but not pure kynurenic acid, is effective in decreasing the evoked activity in area CA1 of the rat hippocampus, Eur. J. Pharmacol., 2005, 513, 75–80 http://dx.doi.org/10.1016/j.ejphar.2005.02.043 [CrossRef]

  • [31] Faden A.I., Ellison J.A., Noble L.J., Effects of competitive and non-competitive NMDA receptor antagonists in spinal cord injury, Eur. J. Pharmacol., 1990, 175, 165–174 http://dx.doi.org/10.1016/0014-2999(90)90227-W [CrossRef]

  • [32] Wrathall J.R., Choiniere D., Teng Y.D., Dosedependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/ kainate antagonist NBQX, J. Neurosci., 1994, 14, 6598–6607

  • [33] McAdoo D.J., Wu P., Microdialysis in central nervous system disorders and their treatment, Pharmacol. Biochem. Behav., 2008, 90, 282–296 http://dx.doi.org/10.1016/j.pbb.2008.03.001 [Web of Science] [CrossRef]

  • [34] Carriedo S.G., Yin H. Z., Sensi S. L., Weiss J. H. (1998) Rapid Ca2+ entry through Ca2+-permeable AMPA/Kainate channels triggers marked intracellular Ca2+ rises and consequent oxygen radical production, J. Neurosci., 1998, 18, 7727–7738

  • [35] Doble A., The role of excitotoxicity in neurodegenerative disease: implications for therapy, Pharmacol. Ther., 1999, 81, 163–221 http://dx.doi.org/10.1016/S0163-7258(98)00042-4 [CrossRef]

  • [36] Choi W.D., Excitotoxic cell death, J. Neurobiol., 1992, 23, 1261–1276 http://dx.doi.org/10.1002/neu.480230915 [CrossRef]

  • [37] Choi W.D., Glutamate neurotoxicity and diseases of the nervous system, Neuron, 1998, 1, 623–634 http://dx.doi.org/10.1016/0896-6273(88)90162-6 [CrossRef]

  • [38] Li S., Mealing G.A., Morley P., Stys P.K., Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport, J. Neurosci., 1999, 19, RC16

  • [39] Li S., Stys P.K., Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter, J. Neurosci., 2000, 20, 1190–1198

  • [40] Rosenberg L.J., Teng Y.D., Wrathall J.R., 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(f) quinoxaline reduces glial loss and acute white matter pathology after experimental spinal cord contusion, J. Neurosci., 1999, 19, 464–475

Comments (0)

Please log in or register to comment.