New perspectives on antibacterial drug research : Open Life Sciences Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

New perspectives on antibacterial drug research

1Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 8, Issue 10, Pages 943–957, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-013-0209-6, August 2013

Publication History

Published Online:


Bacterial resistance to commonly used antibiotics is constantly increasing. Bacteria particularly dangerous for human life are methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium and fluoroquinolone-resistant Pseudomonas aeruginosa. Hence, there is an incessant need for developing compounds with new modes of action and seeking alternate drug targets. In this review, the authors discuss the current situation of antibacterial medicines and present data on new antibiotic targets. Moreover, alternatives to antibiotics, such as bacteriophages, antimicrobial peptides and monoclonal antibodies, are presented. The authors also draw attention to the valuable features of natural sources in developing antibacterial compounds. The need to prevent and control infections as well as the reasonable use of currently available antibiotics is also emphasized.

Keywords: Bacterial resistance; Antibacterial compound; Drug discovery; Target; Antimicrobial peptides

  • [1] Butler M.S., Cooper M.A., Antibiotics in the clinical pipeline in 2011, J. Antibiot., 2011, 64, 413–425 [CrossRef]

  • [2] Diaz Högberg L., Heuer O., Antimicrobial resistance surveillance in Europe 2011, European Centre for Disease Prevention and Control, Surveillance Report, 2012,

  • [3] Livermore D.M., Discovery research: the scientific challenge of finding new antibiotics, J. Antimicrob. Chemother., 2011, 66, 1941–1944 [CrossRef]

  • [4] Brötz-Oesterhelt H., Sass P., Postgenomic strategies in antibacterial drug discovery, Future Microbiol., 2010, 5, 1553–1579 [CrossRef]

  • [5] O’Shea R., Moser H.E., Physicochemical properties of antibacterial compounds: implications for drug discovery, J. Med.Chem., 2008, 51, 2871–2878 [CrossRef]

  • [6] McCluskey S.M., Knapp Ch.W., Predicting antibiotic resistance, not just for quinolones, Front. Microbiol., 2011, 2, 1–2 [CrossRef]

  • [7] Peterson L.R., Bad Bugs, No Drugs: No ESKAPE revisited, Clin. Infect. Dis., 2009, 49, 992–993 [CrossRef]

  • [8] Rice L.B., Federal funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE, J. Inf. Dis., 2008, 197, 1079–1081 [CrossRef]

  • [9] Master R.N., Deane J., Opiela C., Sahm D.F., Recent trends in resistance to cell envelopeactive antibacterial agents among key bacterial pathogens, Ann.N.Y.Acad.Sci, 2013, 1277, 1–7 [CrossRef]

  • [10] Perez F., Van Duin D., Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients, Cleve Clin J Med., 2013, 80, 225–33 [CrossRef]

  • [11] Theuretzbacher U., Future antibiotics scenarios: is the tide starting to turn? Int. J. Antimicrob. Ag., 2009, 34, 15–20 [CrossRef]

  • [12] Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gibert D., Rice L.B., et al., Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America, Clin. Infect. Dis., 2009, 48, 1–12 [CrossRef]

  • [13] Newman D.J., Cragg G.M., Natural products as sources of new drugs over the 30 years from 1981 to 2010, J. Nat. Prod., 2012, 75, 311–335

  • [14] Devasahayam G., Scheld W.M., Hoffman P.S., Newer antibacterial drugs for a new century, Expert Opin. Investig. Drugs, 2010, 19, 215–234 [CrossRef]

  • [15] Bassetti M., Ginocchio F., Mikulska M., Taramasso L., Giacobbe D.R., Will new antimicrobials overcome resistance among Gram-negatives? Expert Rev. Anti Infect. Ther., 2011, 9, 909–922 [CrossRef]

  • [16] Goodman J.J., Martin S.I., Critical appraisal of ceftaroline in the management of communityacquired bacterial pneumonia and skin infections, Ther. Clin. Risk Manag., 2012, 8, 149–156

  • [17] Zamorano L., Juab C., Fernandez-Olmos A., Ge Y., Canton R., Oliver A., Activity of the new cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patients, Clin. Microbiol. Infect., 2010, 16, 1482–1487 [CrossRef]

  • [18] Sader H.S., Rhomberg P.R., Farrell D.J., Jones R.N., Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes, Antimicrob. Agents Chemother., 2011, 55, 2390–2394 [CrossRef]

  • [19] Blais J., Lewis S.R., Krause K.M., Benton B.M., Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, Antimicrob. Agents Chemother., 2012, 56, 1584–1587 [CrossRef]

  • [20] Goyal K., Gautam V., Ray P. Doripenem vs meropenem against Pseudomonas and Acinetobacter. Indian J. Med. Microbiol., 2012, 30, 350–351 [CrossRef]

  • [21] Ueda Y., Kanazawa K., Eguchi K., Takemoto K., Eriguchi Y., Sunagawa M., In vitro and in vivo antibacterial activities of SM-216601, a new broadspectrum parenteral carbapenem, Antimicrob. Agents Chemother., 2005, 49, 4185–4196

  • [22] Kobayashi R., Konomi M., Hasegawa K., Morozumi M., Sunakawa K., Ubukata K., In vitro activity of tebipenem, a new oral carbapenem antibiotic, against penicillin-nonsusceptible Streptococcus pneumoniae, Antimicrob. Agents Chemother., 2005, 49, 889–894 [CrossRef]

  • [23] Sato N., Kijima K., Koresawa T., Mitomi N., Morita J., Suzuki H., et al., Population pharmacokinetics of tebipenem pivoxil (ME1211), a novel oral carbapenem antibiotic, in pediatric patients with otolaryngological infection or pneumonia., Drug Metab Pharmacokinet., 2008, 23, 434–446 [CrossRef]

  • [24] Kurazono M., Ida T., Yamada K., Hirai Y., Maruyama T., Shitara E., et al., In vitro activities of ME1036 (CP5609), a novel parenteral carbapenem, against Methicillin-Resistant Staphylococci, Antimicrob. Agents Chemother., 2004, 48, 2831–2837 [CrossRef]

  • [25] Bassetti M., Ginoccio F., Mikulska M., New treatment options against Gram-negative organisms, Crit. Care, 2011, 15, 215 [CrossRef]

  • [26] Shah P.M., Isaacs R.D., Ertapenem, the first of a new group of carbapenems, J. Antimicrob. Chemother., 2003, 52, 538–542 [CrossRef]

  • [27] Page M.G.P., Dantier C., Desarbre E., In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gramnegative Bacilli, Antimicrob. Agents Chemother., 2010, 54, 2291–2302

  • [28] Hofer B., Dantier C., Gebhardt K., Desarbre E., Schmitt-Hoffmann A., Page M.G., Combined effects of the siderophore monosulfactam BAL30072 and carbapenems on multidrug-resistant Gramnegative bacilli, J. Antimicrob. Chemother., 2013, 68, 1120–1129

  • [29] Livermore D.M., Mushtaq S., Warner M., Activity of BAL30376 (monobactam BAL19764 + BAL29880 + clavulanate) versus Gramnegative bacteria with characterized resistance mechanisms, J. Antimicrob. Chemother., 2010, 65, 2382–2395

  • [30] Ishii Y., Eto M., Mano Y., In vitro potentiation of carbapenems with ME1071, a novel metallo-β-lactamase inhibitor, against metallo-β-lactamaseproducing Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 2010, 54, 3625–362 [CrossRef]

  • [31] Levasseur P., Girard A.M., Claudon M., Goossens H., In vitro antibacterial activity of the Ceftazidime-Avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 2012, 56, 1606–1608 [CrossRef]

  • [32] Hirsch E.B., Ledesma K.R., Chang K.T., Schwartz M.S., Motyl M.R., Tama V.H., In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria, Antimicrob. Agents Chemother., 2012, 56, 3753–3757 [CrossRef]

  • [33] Noel G.J., Draper M.P., Hait H., Tanaka S.K., Arbeit R.D., A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections, Antimicrob. Agents Chemother., 2012, 56, 5650–5654 [CrossRef]

  • [34] Noskin G.A., Tigecycline: A new glycylcycline for treatment of serious infections, Clin. Inf. Dis., 2005, 41, S303–S314 [CrossRef]

  • [35] Rubinchik E., Schneider T., Elliott M., Mechanism of action and limited cross-resistance of new lipopeptide MX-2401, Antimicrob. Agents Chemother., 2011, 55, 2743–2754 [CrossRef]

  • [36] Saravolatz L.D, Stein G.E., Johnson L.B., Telavancin: A novel lipoglycopeptide, Clin. Infect. Dis., 2009, 49, 1908–1914 [CrossRef]

  • [37] Billeter M., Zervos M.J., Chen A.Y., Dalovisio J.R., Kurukularatne Ch., Dalbavancin: A Novel Once-Weekly Lipoglycopeptide Antibiotic, Clin. Infect. Dis., 2008, 46, 577–583 [CrossRef]

  • [38] Outterson K., Samora J.B., Keller-Cuda K.: Will longer antimicrobial patents improve global public health? Lancet Infect. Dis., 2007, 7, 559–566 [CrossRef]

  • [39] Lonks J.R., Goldmann D.A, Telithromycin: A ketolide antibiotic for the treatment of respiratory tract infections, Clin. Infect. Dis., 2005, 40, 1657–1664 [CrossRef]

  • [40] Gleason P.P., Walters C., Heaton A.H., Schafer J.A., Telithromycin: The perils of hasty adoption and persistence of off-label prescribing, JMCP, 2007, 13, 420–425

  • [41] English M.L., Fredericks Ch.E., Milanesio N.A., Rohowsky N., Xu Z.Q., Jenta T.R.J., et al., Cethromycin versus clarithromycin for xommunity-acquired pneumonia: Comparative efficacy and safety outcomes from two double-blinded, randomized, parallel-group, multicenter, multinational noninferiority studies, Antimicrob. Agents Chemother., 2012, 56, 2037–2047 [CrossRef]

  • [42] Oldach D., Clark K., Schranz J., Das A., Craft J.C., Scott D., et al., A randomized, double-blind, multi-center, phase 2 study comparing the efficacy and safety of oral solithromycin (CEM-101) to oral levofloxacin in the treatment of patients with community-acquired bacterial pneumonia, Antimicrob Agents Chemother., 2013, doi:10.1128/AAC.00197-13

  • [43] Golparian D., Fernandes P., Ohnishi M., Jensen J.S., Unemoa M., In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains, including those with high-level antimicrobial resistance: Potential treatment option for gonorrhea?, Antimicrob. Agents Chemother., 2012, 56, 2739–2742

  • [44] McCluskey S.M., Knapp Ch.W., Predicting antibiotic resistance, not just for quinolones, Front. Microbiol., 2011, 2, 1–2 [CrossRef]

  • [45] Shaw K.J., Barbachyn M.R., The oxazolidinones: past, present, and future, Ann. N.Y. Acad. Sci., 2011, 1241, 48–70 [CrossRef]

  • [46] Jabes D., The antibiotic R&D pipeline: an update, Curr. Opin. Microbiol., 2011, 14, 564–569 [CrossRef]

  • [47] Remy J.M., Tow-Keogh C.A., McConnell T.S., Dalton J.M., Devito J.A., Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization, J. Antimicrob. Chemother., 2012, 67, 2814–2820 [CrossRef]

  • [48] Morrow B.J., He W., Amsler K.M., Foleno B.D., Macielag M.J., Lynch A.S. et al., In vitro antibacterial activities of JNJ-Q2, a new broad-spectrum fluoroquinolone, Antimicrob. Agents Chemother, 2010, 54, 1955–1964 [CrossRef]

  • [49] Trzoss M., Bensen D.C., Li X., Chen Z., Lam T., Zhang J., et al., Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE), Part II: development of inhibitors with broad spectrum, Gram-negative antibacterial activity, Bioorg Med Chem Lett. 2013, 23, 1537–1543 [CrossRef]

  • [50] Huband M.D., Cohen M.A., Zurack M., Hanna D.L., Skerlos L.A., Sulavik M.C., In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant Gram-positive and fastidious organism groups, Antimicrob. Agents Chemother., 2007, 51, 1191–1201 [CrossRef]

  • [51] Eakin A.E., Green O., Hales N., Walkup G.K., Bist S., Singh A., et al., Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents, Antimicrob. Agents Chemother., 2012, 56, 1240–1246 [CrossRef]

  • [52] East S.P., Bantry Whtie C., Barker O., Barker S., Bennett J., Brown D., et al., DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity, Bioorg. Med. Chem. Lett., 2009, 19, 894–899 [CrossRef]

  • [53] Cheng J., Thanassi J.A., Thoma Ch.L., Bradbury B.J., Deshpande M., Pucci M.J., Dual targeting of DNA gyrase and topoisomerase IV: Target interactions of heteroaryl isothiazolones in Staphylococcus aureus, Antimicrob. Agents Chemother., 2007, 51, 2445–2453 [CrossRef]

  • [54] Pucci M.J., Podos S.D., Thanassi J.A., Leggio M.J., Bradbury B.J., Deshpande M., In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens., Antimicrob. Agents Chemother., 2011, 55, 2860–2871 [CrossRef]

  • [55] Black M.T., Stachyra T., Platel D., Girard A.M., Claudon M., Bruneau J.M., et al., Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases, Antimicrob. Agents Chemother., 2008, 52, 3339–3349 [CrossRef]

  • [56] Housman S.T., Sutherland Ch., Nicolau D.P., In vitro evaluation of novel compounds against selected resistant Pseudomonas aeruginosa isolates, Antimicrob. Agents Chemother., 2012, 56, 1646–1649 [CrossRef]

  • [57] Politano A.D., Sawyer R.G., NXL-103, a combnation of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA. Curr. Opin. Investig. Drugs, 2010, 11, 225–236

  • [58] Ross J.E., Sader H.S., Ivezic-Schoengeld Z., Paukner S., Jones R.N., Disk diffusion and MIC quality control ranges for BC-3205 and BC-3781, two novel pleuromutilin antibiotics, J. Clin. Microbiol., 2012, 50, 3361–3364 [CrossRef]

  • [59] Lancaster J.W., Matthews S.J., Fidaxomicin: The newest addition to the armamentarium against Clostridium difficile infections, Clin. Ther., 2012, 34, 1–13 [CrossRef]

  • [60] Mascio C.T.M., Mortin L.I., Howland K.T., Van Praagh A.D.G., Zhang S., Arya A., et al., In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile, Antimicrob. Agents Chemother., 2012, 56, 5023–5030 [CrossRef]

  • [61] Hoffman P.S., Sisson G., Croxen M.A., Welch K., Harman W.D., Cremades N., et al., Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni, Antimicrob. Agents Chemother., 2007, 51, 868–876 [CrossRef]

  • [62] Warren C.A., Van Opstal E., Ballard T.E., Kennedy A., Wang X., Riggins M., et al., Amixicile, a novel inhibitor of pyruvate: ferredoxin oxidoreductase, shows efficacy against Clostridium difficile in a mouse infection model, Antimicrob Agents Chemother., 2012, 56, 4103–4111 [CrossRef]

  • [63] Black M.T., Hodgson J., New target sites in bacteria for overcoming antibiotic resistance, Adv. Drug Deliv. Rev., 2005, 57, 1528–1538 [CrossRef]

  • [64] Projan S.J., New (and not so new) antibacterial targets — from where and when will the novel drugs come? Curr. Opin. Pharmacol., 2002, 2, 513–522 [CrossRef]

  • [65] Silver L.L., Challenges of Antibacterial Discovery, Clin. Microbiol. Rev., 2012, 24, 71–109 [CrossRef]

  • [66] Dubrac S., Gomperts Boneca I., Poupel O., Msadek T., New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell Wall Metabolism and Biofilm Formationin Staphylococcus aureus, J. Bacteriol., 2007, 189, 8257–8269 [CrossRef]

  • [67] Watanabe T., Igarashi M., Okajima T., Ishii E., Kino H., Hatano M., et al., Isolation and characterization of signermycin B, an antibiotic that targets the dimerization domain of histidine kinase WalK, Antimicrob. Agents Chemother., 2012, 56, 3657–63 [CrossRef]

  • [68] Teo J.W.P., Thayalan P., Beer D., Yap A.S.L., Nanjundappa M., Ngew X., Peptide deformylase inhibitors as potent antimycobacterial agents, Antimicrob. Agents Chemother., 2006, 50, 3665–3673 [CrossRef]

  • [69] Foss M.H., Eun Y.J., Grove C.I., Pauw D.A., Sorto N.A., Rensvold J.W., et al., Inhibitors of bacterial tubulin target bacterial membranes in vivo., Medchemcomm., 2013, 1, 112–119 [CrossRef]

  • [70] Ruzin A., Singh G., Severin A., Yang Y., Dushin R.G., Sutherland A.G., et al., Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycinresistant Gram-positive bacteria, Antimicrob. Agents Chemother. 2004, 48, 728–738 [CrossRef]

  • [71] De Pascale G., Nazi I., Harrison P.H.M., Wright G.D., β-lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents, J. Antibiot., 2011, 64, 483–487 [CrossRef]

  • [72] Butler M.M., Williams J.D., Peet N.P., Moir D.T., Panchal R.G., Bavari S., et al., Comparative in vitro activity profiles of novel bis-indole antibacterials against Gram-positive and Gram-negative clinical isolates, Antimicrob. Agents Chemother., 2010, 54, 3974–3977 [CrossRef]

  • [73] Agarwal A., Louise-May S., Thanassi J.A., Podos S.D., Small molecules inhibitors of E.coli primase, a novel bacterial target, Bioorg. Med. Chem. Lett., 2007, 17, 2807–2810 [CrossRef]

  • [74] Lopez M., Kohler S., Winum J.Y., Zinc metalloenzymes as new targets against the bacterial pathogen Brucella, J. Innorg. Biochem., 2011, 111, 138–145 [CrossRef]

  • [75] Manallack D.T., Crosby Y., Khakham Y., Capuano B., Platensimycin: A promising antimicrobial targeting fatty acid synthesis, Curr. Med. Chem., 2008, 15, 705–710 [CrossRef]

  • [76] Banevicius M.A., Kaplan N, Hafkin B., Nicolau D.P., Pharmacokinetics, pharmacodynamics and efficacy of novel FabI inhibitor AFN-1252 against MSSA and MRSA in the murine thigh infection model, J. Chemother., 2013, 25, 26–31 [CrossRef]

  • [77] Falconer S.B., Brown E.D., New screens and targets in antibacterial drug discovery, Curr. Opin. Microbiol., 2009, 12, 497–504 [CrossRef]

  • [78] Merril C.R., Scholl D., Adhya S.L., The prospect for bacteriophage therapy in Western medicine., Nat. Rev. Drug Discov., 2003, 2, 489–497 [CrossRef]

  • [79] Ghannad M.S., Mohammadi A., Bacteriophage: Time to re-evaluate to potential of phage therapy as a promising agent to control multidrug-resistant bacteria, Iran. J. Basic Med. Sci., 2012, 15, 693–701

  • [80] Coates A.R., Hu Y., Novel approaches to developing new antibiotics for bacterial infections, British J. Pharmac., 2007, 152, 1147–1154 [CrossRef]

  • [81] Dabrowska K., Switala-Jelen K., Opolski A., Weber-Dabrowska B., Gorski A., Bacteriophage penetration in vertebrates, J. Appl. Microbiol., 2005, 98, 7–13 [CrossRef]

  • [82] Smet K.D., Contreras R., Human antimicrobial peptides: defensins, cathelicidins and histatins, Biotechnol. Lett., 2005, 27, 1337–1347 [CrossRef]

  • [83] Wang G., Li X., Wang Z., APD2: the updated antimicrobial peptide database and its application in peptide design, Nucl. Acids Res., 2009, 37, D933–D937 [CrossRef]

  • [84] Bals R., Epithelial antimicrobial peptides in host defense against infection, Respir. Res., 2000, 1, 141–150 [CrossRef]

  • [85] Kavanagh K., Dowd S., Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol., 2004, 56, 285–289 [CrossRef]

  • [86] White S.H., Wimley W.C., Selsted M.E., Structure, function, and membrane integration of defensins, Curr. Opin. Struct. Biol., 1995, 5, 521–527 [CrossRef]

  • [87] Baltzer S.A., Brown M.H., Antimicrobial peptides-Promising Alternatives to Conventional Antibiotics, J. Mol Microbiol Biotechnol, 2011, 20, 228–235 [CrossRef]

  • [88] Svetoch E.A., Eruslanov B.V., Levchuk V.P., Isolation of Lactobacillus salivarius 1077 (NRLB-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum, Appl. Environ. Microbiol., 2011, 77, 2749–2754

  • [89] Cleveland J., Montville T.J, Nes I.F., Chikindas M.L., Bacteriocins: safe, natural antimicrobials for food preservation, Int. J. Food Microbiol., 2001, 4, 1–20 [CrossRef]

  • [90] Gill A., Scanlon T.C., Osipovitch D.C., Madden D.R., Griswold K.E., Crystal structure of a charge engineered human lysozyme having enhanced bactericidal activity, PLoS ONE, 2011, 6, e16788 [CrossRef]

  • [91] Koon H.W., Shih D.Q., Hing T.C., Yoo J.H., Ho S., Chen X., et al., Human monoclonal antibodies against Clostridium difficile toxin A and B inhibit inflammatory and histologic responses to toxins A and B in human colon and peripheral blood monocytes, Antimicrob. Agents Chemother., 2013, 57, 3214–3223 [CrossRef]

  • [92] François B., Luyt C.E., Dugard A., Wolff M., Diehl J.L., Jaber S., Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial, Crit. Care Med., 2012, 40, 2320–2326 [CrossRef]

  • [93] Fadli M., Saad A., Sayadi S., Chevalier J., Mezrioui N.E., Pagès J.M., et al., Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection — bacteria and their synergistic potential with antibiotics, Phytomedicine, 2012, 19, 464–471 [CrossRef]

  • [94] Hu Z.Q., Zhao W.H., Yoda Y., Asano N., Hara Y., Shimamura T., Additive, indifferent and antagonistic effects in combinations of epigallocatechin gallate with 12 non-beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus, J. Antimicrob. Chemother., 2002, 50, 1051–1054

  • [95] Grayson M.L, Heymann D., Pittet D., The evolving threat of antimicrobial resistance. Introduction, Chapter 1, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012,

  • [96] Grundmann H., O’Brien T.F., Stelling J.M., Surveillance to track antimicrobial use and resistance, Chapter 2, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012,

  • [97] Cars O., Heddini A., Measures to ensure better use of antibiotics, Chapter 3, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012,

  • [98] Cookson B., Gastmeier P., Seto W.H., Prevention and control of infection in the health care facilities, Chapter 5, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012,

  • [99] Chang S., So A., Fostering Innovation to Combat Antimicrobial Resistance, Chapter 6, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012,

  • [100] Gilbert D.N., Guidos R.J., Boucher H.W., Talbot G.H., Spellberg B., Edwards Jr J.E., et al, The 10×20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020, Infectious Diseases Society of America, Clin. Infect. Dis., 2010, 50, 1081–1083

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Federica Paladini, Mauro Pollini, Alessandro Sannino, and Luigi Ambrosio
Biomacromolecules, 2015, Page 150617083645001
Claudia Monteiro, Marina Pinheiro, Mariana Fernandes, Sílvia Maia, Catarina L. Seabra, Frederico Ferreira-da-Silva, Salette Reis, Paula Gomes, and M. Cristina L. Martins
Molecular Pharmaceutics, 2015, Page 150611192244005
Steven M. Wales, Katherine A. Hammer, Amy M. King, Andrew J. Tague, Dena Lyras, Thomas V. Riley, Paul A. Keller, and Stephen G. Pyne
Org. Biomol. Chem., 2015, Volume 13, Number 20, Page 5743
M. Ozgo
Journal of Molluscan Studies, 2014, Volume 80, Number 3, Page 286
Cristina de Souza Mendes and Adelaide de Souza Antunes
Antibiotics, 2013, Volume 2, Number 4, Page 500

Comments (0)

Please log in or register to comment.