Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology


IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
Online
ISSN
2391-5412
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

New perspectives on antibacterial drug research

1Laboratory of Biologically Active Compounds, National Institute of Public Health — National Institute of Hygiene, 00-791, Warsaw, Poland

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 8, Issue 10, Pages 943–957, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-013-0209-6, August 2013

Publication History

Published Online:
2013-08-02

Abstract

Bacterial resistance to commonly used antibiotics is constantly increasing. Bacteria particularly dangerous for human life are methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium and fluoroquinolone-resistant Pseudomonas aeruginosa. Hence, there is an incessant need for developing compounds with new modes of action and seeking alternate drug targets. In this review, the authors discuss the current situation of antibacterial medicines and present data on new antibiotic targets. Moreover, alternatives to antibiotics, such as bacteriophages, antimicrobial peptides and monoclonal antibodies, are presented. The authors also draw attention to the valuable features of natural sources in developing antibacterial compounds. The need to prevent and control infections as well as the reasonable use of currently available antibiotics is also emphasized.

Keywords: Bacterial resistance; Antibacterial compound; Drug discovery; Target; Antimicrobial peptides

  • [1] Butler M.S., Cooper M.A., Antibiotics in the clinical pipeline in 2011, J. Antibiot., 2011, 64, 413–425 http://dx.doi.org/10.1038/ja.2011.44 [CrossRef]

  • [2] Diaz Högberg L., Heuer O., Antimicrobial resistance surveillance in Europe 2011, European Centre for Disease Prevention and Control, Surveillance Report, 2012, http://www.ecdc.europa.eu/en/publications/Publications/antimicrobial-resistancesurveillance-europe-2011.pdf

  • [3] Livermore D.M., Discovery research: the scientific challenge of finding new antibiotics, J. Antimicrob. Chemother., 2011, 66, 1941–1944 http://dx.doi.org/10.1093/jac/dkr262 [CrossRef]

  • [4] Brötz-Oesterhelt H., Sass P., Postgenomic strategies in antibacterial drug discovery, Future Microbiol., 2010, 5, 1553–1579 http://dx.doi.org/10.2217/fmb.10.119 [CrossRef]

  • [5] O’Shea R., Moser H.E., Physicochemical properties of antibacterial compounds: implications for drug discovery, J. Med.Chem., 2008, 51, 2871–2878 http://dx.doi.org/10.1021/jm700967e [CrossRef]

  • [6] McCluskey S.M., Knapp Ch.W., Predicting antibiotic resistance, not just for quinolones, Front. Microbiol., 2011, 2, 1–2 http://dx.doi.org/10.3389/fmicb.2011.00178 [CrossRef]

  • [7] Peterson L.R., Bad Bugs, No Drugs: No ESKAPE revisited, Clin. Infect. Dis., 2009, 49, 992–993 http://dx.doi.org/10.1086/605539 [CrossRef]

  • [8] Rice L.B., Federal funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE, J. Inf. Dis., 2008, 197, 1079–1081 http://dx.doi.org/10.1086/533452 [CrossRef]

  • [9] Master R.N., Deane J., Opiela C., Sahm D.F., Recent trends in resistance to cell envelopeactive antibacterial agents among key bacterial pathogens, Ann.N.Y.Acad.Sci, 2013, 1277, 1–7 http://dx.doi.org/10.1111/nyas.12022 [CrossRef]

  • [10] Perez F., Van Duin D., Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients, Cleve Clin J Med., 2013, 80, 225–33 http://dx.doi.org/10.3949/ccjm.80a.12182 [CrossRef]

  • [11] Theuretzbacher U., Future antibiotics scenarios: is the tide starting to turn? Int. J. Antimicrob. Ag., 2009, 34, 15–20 http://dx.doi.org/10.1016/j.ijantimicag.2009.02.005 [CrossRef]

  • [12] Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gibert D., Rice L.B., et al., Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America, Clin. Infect. Dis., 2009, 48, 1–12 http://dx.doi.org/10.1086/595011 [CrossRef]

  • [13] Newman D.J., Cragg G.M., Natural products as sources of new drugs over the 30 years from 1981 to 2010, J. Nat. Prod., 2012, 75, 311–335 http://dx.doi.org/10.1021/np200906s

  • [14] Devasahayam G., Scheld W.M., Hoffman P.S., Newer antibacterial drugs for a new century, Expert Opin. Investig. Drugs, 2010, 19, 215–234 http://dx.doi.org/10.1517/13543780903505092 [CrossRef]

  • [15] Bassetti M., Ginocchio F., Mikulska M., Taramasso L., Giacobbe D.R., Will new antimicrobials overcome resistance among Gram-negatives? Expert Rev. Anti Infect. Ther., 2011, 9, 909–922 http://dx.doi.org/10.1586/eri.11.107 [CrossRef]

  • [16] Goodman J.J., Martin S.I., Critical appraisal of ceftaroline in the management of communityacquired bacterial pneumonia and skin infections, Ther. Clin. Risk Manag., 2012, 8, 149–156

  • [17] Zamorano L., Juab C., Fernandez-Olmos A., Ge Y., Canton R., Oliver A., Activity of the new cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patients, Clin. Microbiol. Infect., 2010, 16, 1482–1487 http://dx.doi.org/10.1111/j.1469-0691.2010.03130.x [CrossRef]

  • [18] Sader H.S., Rhomberg P.R., Farrell D.J., Jones R.N., Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes, Antimicrob. Agents Chemother., 2011, 55, 2390–2394 http://dx.doi.org/10.1128/AAC.01737-10 [CrossRef]

  • [19] Blais J., Lewis S.R., Krause K.M., Benton B.M., Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, Antimicrob. Agents Chemother., 2012, 56, 1584–1587 http://dx.doi.org/10.1128/AAC.05532-11 [CrossRef]

  • [20] Goyal K., Gautam V., Ray P. Doripenem vs meropenem against Pseudomonas and Acinetobacter. Indian J. Med. Microbiol., 2012, 30, 350–351 http://dx.doi.org/10.4103/0255-0857.99502 [CrossRef]

  • [21] Ueda Y., Kanazawa K., Eguchi K., Takemoto K., Eriguchi Y., Sunagawa M., In vitro and in vivo antibacterial activities of SM-216601, a new broadspectrum parenteral carbapenem, Antimicrob. Agents Chemother., 2005, 49, 4185–4196 http://dx.doi.org/10.1128/AAC.49.10.4185-4196.2005

  • [22] Kobayashi R., Konomi M., Hasegawa K., Morozumi M., Sunakawa K., Ubukata K., In vitro activity of tebipenem, a new oral carbapenem antibiotic, against penicillin-nonsusceptible Streptococcus pneumoniae, Antimicrob. Agents Chemother., 2005, 49, 889–894 http://dx.doi.org/10.1128/AAC.49.3.889-894.2005 [CrossRef]

  • [23] Sato N., Kijima K., Koresawa T., Mitomi N., Morita J., Suzuki H., et al., Population pharmacokinetics of tebipenem pivoxil (ME1211), a novel oral carbapenem antibiotic, in pediatric patients with otolaryngological infection or pneumonia., Drug Metab Pharmacokinet., 2008, 23, 434–446 http://dx.doi.org/10.2133/dmpk.23.434 [CrossRef]

  • [24] Kurazono M., Ida T., Yamada K., Hirai Y., Maruyama T., Shitara E., et al., In vitro activities of ME1036 (CP5609), a novel parenteral carbapenem, against Methicillin-Resistant Staphylococci, Antimicrob. Agents Chemother., 2004, 48, 2831–2837 http://dx.doi.org/10.1128/AAC.48.8.2831-2837.2004 [CrossRef]

  • [25] Bassetti M., Ginoccio F., Mikulska M., New treatment options against Gram-negative organisms, Crit. Care, 2011, 15, 215 http://dx.doi.org/10.1186/cc9997 [CrossRef]

  • [26] Shah P.M., Isaacs R.D., Ertapenem, the first of a new group of carbapenems, J. Antimicrob. Chemother., 2003, 52, 538–542 http://dx.doi.org/10.1093/jac/dkg404 [CrossRef]

  • [27] Page M.G.P., Dantier C., Desarbre E., In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gramnegative Bacilli, Antimicrob. Agents Chemother., 2010, 54, 2291–2302 http://dx.doi.org/10.1128/AAC.01525-09

  • [28] Hofer B., Dantier C., Gebhardt K., Desarbre E., Schmitt-Hoffmann A., Page M.G., Combined effects of the siderophore monosulfactam BAL30072 and carbapenems on multidrug-resistant Gramnegative bacilli, J. Antimicrob. Chemother., 2013, 68, 1120–1129 http://dx.doi.org/10.1093/jac/dks527

  • [29] Livermore D.M., Mushtaq S., Warner M., Activity of BAL30376 (monobactam BAL19764 + BAL29880 + clavulanate) versus Gramnegative bacteria with characterized resistance mechanisms, J. Antimicrob. Chemother., 2010, 65, 2382–2395 http://dx.doi.org/10.1093/jac/dkq310

  • [30] Ishii Y., Eto M., Mano Y., In vitro potentiation of carbapenems with ME1071, a novel metallo-β-lactamase inhibitor, against metallo-β-lactamaseproducing Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 2010, 54, 3625–362 http://dx.doi.org/10.1128/AAC.01397-09 [CrossRef]

  • [31] Levasseur P., Girard A.M., Claudon M., Goossens H., In vitro antibacterial activity of the Ceftazidime-Avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 2012, 56, 1606–1608 http://dx.doi.org/10.1128/AAC.06064-11 [CrossRef]

  • [32] Hirsch E.B., Ledesma K.R., Chang K.T., Schwartz M.S., Motyl M.R., Tama V.H., In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria, Antimicrob. Agents Chemother., 2012, 56, 3753–3757 http://dx.doi.org/10.1128/AAC.05927-11 [CrossRef]

  • [33] Noel G.J., Draper M.P., Hait H., Tanaka S.K., Arbeit R.D., A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections, Antimicrob. Agents Chemother., 2012, 56, 5650–5654 http://dx.doi.org/10.1128/AAC.00948-12 [CrossRef]

  • [34] Noskin G.A., Tigecycline: A new glycylcycline for treatment of serious infections, Clin. Inf. Dis., 2005, 41, S303–S314 http://dx.doi.org/10.1086/431672 [CrossRef]

  • [35] Rubinchik E., Schneider T., Elliott M., Mechanism of action and limited cross-resistance of new lipopeptide MX-2401, Antimicrob. Agents Chemother., 2011, 55, 2743–2754 http://dx.doi.org/10.1128/AAC.00170-11 [CrossRef]

  • [36] Saravolatz L.D, Stein G.E., Johnson L.B., Telavancin: A novel lipoglycopeptide, Clin. Infect. Dis., 2009, 49, 1908–1914 http://dx.doi.org/10.1086/648438 [CrossRef]

  • [37] Billeter M., Zervos M.J., Chen A.Y., Dalovisio J.R., Kurukularatne Ch., Dalbavancin: A Novel Once-Weekly Lipoglycopeptide Antibiotic, Clin. Infect. Dis., 2008, 46, 577–583 http://dx.doi.org/10.1086/526772 [CrossRef]

  • [38] Outterson K., Samora J.B., Keller-Cuda K.: Will longer antimicrobial patents improve global public health? Lancet Infect. Dis., 2007, 7, 559–566 http://dx.doi.org/10.1016/S1473-3099(07)70188-3 [CrossRef]

  • [39] Lonks J.R., Goldmann D.A, Telithromycin: A ketolide antibiotic for the treatment of respiratory tract infections, Clin. Infect. Dis., 2005, 40, 1657–1664 http://dx.doi.org/10.1086/430067 [CrossRef]

  • [40] Gleason P.P., Walters C., Heaton A.H., Schafer J.A., Telithromycin: The perils of hasty adoption and persistence of off-label prescribing, JMCP, 2007, 13, 420–425

  • [41] English M.L., Fredericks Ch.E., Milanesio N.A., Rohowsky N., Xu Z.Q., Jenta T.R.J., et al., Cethromycin versus clarithromycin for xommunity-acquired pneumonia: Comparative efficacy and safety outcomes from two double-blinded, randomized, parallel-group, multicenter, multinational noninferiority studies, Antimicrob. Agents Chemother., 2012, 56, 2037–2047 http://dx.doi.org/10.1128/AAC.05596-11 [CrossRef]

  • [42] Oldach D., Clark K., Schranz J., Das A., Craft J.C., Scott D., et al., A randomized, double-blind, multi-center, phase 2 study comparing the efficacy and safety of oral solithromycin (CEM-101) to oral levofloxacin in the treatment of patients with community-acquired bacterial pneumonia, Antimicrob Agents Chemother., 2013, doi:10.1128/AAC.00197-13

  • [43] Golparian D., Fernandes P., Ohnishi M., Jensen J.S., Unemoa M., In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains, including those with high-level antimicrobial resistance: Potential treatment option for gonorrhea?, Antimicrob. Agents Chemother., 2012, 56, 2739–2742 http://dx.doi.org/10.1128/AAC.00036-12

  • [44] McCluskey S.M., Knapp Ch.W., Predicting antibiotic resistance, not just for quinolones, Front. Microbiol., 2011, 2, 1–2 http://dx.doi.org/10.3389/fmicb.2011.00178 [CrossRef]

  • [45] Shaw K.J., Barbachyn M.R., The oxazolidinones: past, present, and future, Ann. N.Y. Acad. Sci., 2011, 1241, 48–70 http://dx.doi.org/10.1111/j.1749-6632.2011.06330.x [CrossRef]

  • [46] Jabes D., The antibiotic R&D pipeline: an update, Curr. Opin. Microbiol., 2011, 14, 564–569 http://dx.doi.org/10.1016/j.mib.2011.08.002 [CrossRef]

  • [47] Remy J.M., Tow-Keogh C.A., McConnell T.S., Dalton J.M., Devito J.A., Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization, J. Antimicrob. Chemother., 2012, 67, 2814–2820 http://dx.doi.org/10.1093/jac/dks307 [CrossRef]

  • [48] Morrow B.J., He W., Amsler K.M., Foleno B.D., Macielag M.J., Lynch A.S. et al., In vitro antibacterial activities of JNJ-Q2, a new broad-spectrum fluoroquinolone, Antimicrob. Agents Chemother, 2010, 54, 1955–1964 http://dx.doi.org/10.1128/AAC.01374-09 [CrossRef]

  • [49] Trzoss M., Bensen D.C., Li X., Chen Z., Lam T., Zhang J., et al., Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE), Part II: development of inhibitors with broad spectrum, Gram-negative antibacterial activity, Bioorg Med Chem Lett. 2013, 23, 1537–1543 http://dx.doi.org/10.1016/j.bmcl.2012.11.073 [CrossRef]

  • [50] Huband M.D., Cohen M.A., Zurack M., Hanna D.L., Skerlos L.A., Sulavik M.C., In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant Gram-positive and fastidious organism groups, Antimicrob. Agents Chemother., 2007, 51, 1191–1201 http://dx.doi.org/10.1128/AAC.01321-06 [CrossRef]

  • [51] Eakin A.E., Green O., Hales N., Walkup G.K., Bist S., Singh A., et al., Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents, Antimicrob. Agents Chemother., 2012, 56, 1240–1246 http://dx.doi.org/10.1128/AAC.05485-11 [CrossRef]

  • [52] East S.P., Bantry Whtie C., Barker O., Barker S., Bennett J., Brown D., et al., DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity, Bioorg. Med. Chem. Lett., 2009, 19, 894–899 http://dx.doi.org/10.1016/j.bmcl.2008.11.102 [CrossRef]

  • [53] Cheng J., Thanassi J.A., Thoma Ch.L., Bradbury B.J., Deshpande M., Pucci M.J., Dual targeting of DNA gyrase and topoisomerase IV: Target interactions of heteroaryl isothiazolones in Staphylococcus aureus, Antimicrob. Agents Chemother., 2007, 51, 2445–2453 http://dx.doi.org/10.1128/AAC.00158-07 [CrossRef]

  • [54] Pucci M.J., Podos S.D., Thanassi J.A., Leggio M.J., Bradbury B.J., Deshpande M., In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens., Antimicrob. Agents Chemother., 2011, 55, 2860–2871 http://dx.doi.org/10.1128/AAC.01666-10 [CrossRef]

  • [55] Black M.T., Stachyra T., Platel D., Girard A.M., Claudon M., Bruneau J.M., et al., Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases, Antimicrob. Agents Chemother., 2008, 52, 3339–3349 http://dx.doi.org/10.1128/AAC.00496-08 [CrossRef]

  • [56] Housman S.T., Sutherland Ch., Nicolau D.P., In vitro evaluation of novel compounds against selected resistant Pseudomonas aeruginosa isolates, Antimicrob. Agents Chemother., 2012, 56, 1646–1649 http://dx.doi.org/10.1128/AAC.05944-11 [CrossRef]

  • [57] Politano A.D., Sawyer R.G., NXL-103, a combnation of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA. Curr. Opin. Investig. Drugs, 2010, 11, 225–236

  • [58] Ross J.E., Sader H.S., Ivezic-Schoengeld Z., Paukner S., Jones R.N., Disk diffusion and MIC quality control ranges for BC-3205 and BC-3781, two novel pleuromutilin antibiotics, J. Clin. Microbiol., 2012, 50, 3361–3364 http://dx.doi.org/10.1128/JCM.01294-12 [CrossRef]

  • [59] Lancaster J.W., Matthews S.J., Fidaxomicin: The newest addition to the armamentarium against Clostridium difficile infections, Clin. Ther., 2012, 34, 1–13 http://dx.doi.org/10.1016/j.clinthera.2011.12.003 [CrossRef]

  • [60] Mascio C.T.M., Mortin L.I., Howland K.T., Van Praagh A.D.G., Zhang S., Arya A., et al., In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile, Antimicrob. Agents Chemother., 2012, 56, 5023–5030 http://dx.doi.org/10.1128/AAC.00057-12 [CrossRef]

  • [61] Hoffman P.S., Sisson G., Croxen M.A., Welch K., Harman W.D., Cremades N., et al., Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni, Antimicrob. Agents Chemother., 2007, 51, 868–876 http://dx.doi.org/10.1128/AAC.01159-06 [CrossRef]

  • [62] Warren C.A., Van Opstal E., Ballard T.E., Kennedy A., Wang X., Riggins M., et al., Amixicile, a novel inhibitor of pyruvate: ferredoxin oxidoreductase, shows efficacy against Clostridium difficile in a mouse infection model, Antimicrob Agents Chemother., 2012, 56, 4103–4111 http://dx.doi.org/10.1128/AAC.00360-12 [CrossRef]

  • [63] Black M.T., Hodgson J., New target sites in bacteria for overcoming antibiotic resistance, Adv. Drug Deliv. Rev., 2005, 57, 1528–1538 http://dx.doi.org/10.1016/j.addr.2005.04.006 [CrossRef]

  • [64] Projan S.J., New (and not so new) antibacterial targets — from where and when will the novel drugs come? Curr. Opin. Pharmacol., 2002, 2, 513–522 http://dx.doi.org/10.1016/S1471-4892(02)00197-2 [CrossRef]

  • [65] Silver L.L., Challenges of Antibacterial Discovery, Clin. Microbiol. Rev., 2012, 24, 71–109 http://dx.doi.org/10.1128/CMR.00030-10 [CrossRef]

  • [66] Dubrac S., Gomperts Boneca I., Poupel O., Msadek T., New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell Wall Metabolism and Biofilm Formationin Staphylococcus aureus, J. Bacteriol., 2007, 189, 8257–8269 http://dx.doi.org/10.1128/JB.00645-07 [CrossRef]

  • [67] Watanabe T., Igarashi M., Okajima T., Ishii E., Kino H., Hatano M., et al., Isolation and characterization of signermycin B, an antibiotic that targets the dimerization domain of histidine kinase WalK, Antimicrob. Agents Chemother., 2012, 56, 3657–63 http://dx.doi.org/10.1128/AAC.06467-11 [CrossRef]

  • [68] Teo J.W.P., Thayalan P., Beer D., Yap A.S.L., Nanjundappa M., Ngew X., Peptide deformylase inhibitors as potent antimycobacterial agents, Antimicrob. Agents Chemother., 2006, 50, 3665–3673 http://dx.doi.org/10.1128/AAC.00555-06 [CrossRef]

  • [69] Foss M.H., Eun Y.J., Grove C.I., Pauw D.A., Sorto N.A., Rensvold J.W., et al., Inhibitors of bacterial tubulin target bacterial membranes in vivo., Medchemcomm., 2013, 1, 112–119 http://dx.doi.org/10.1039/c2md20127e [CrossRef]

  • [70] Ruzin A., Singh G., Severin A., Yang Y., Dushin R.G., Sutherland A.G., et al., Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycinresistant Gram-positive bacteria, Antimicrob. Agents Chemother. 2004, 48, 728–738 http://dx.doi.org/10.1128/AAC.48.3.728-738.2004 [CrossRef]

  • [71] De Pascale G., Nazi I., Harrison P.H.M., Wright G.D., β-lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents, J. Antibiot., 2011, 64, 483–487 http://dx.doi.org/10.1038/ja.2011.37 [CrossRef]

  • [72] Butler M.M., Williams J.D., Peet N.P., Moir D.T., Panchal R.G., Bavari S., et al., Comparative in vitro activity profiles of novel bis-indole antibacterials against Gram-positive and Gram-negative clinical isolates, Antimicrob. Agents Chemother., 2010, 54, 3974–3977 http://dx.doi.org/10.1128/AAC.00484-10 [CrossRef]

  • [73] Agarwal A., Louise-May S., Thanassi J.A., Podos S.D., Small molecules inhibitors of E.coli primase, a novel bacterial target, Bioorg. Med. Chem. Lett., 2007, 17, 2807–2810 http://dx.doi.org/10.1016/j.bmcl.2007.02.056 [CrossRef]

  • [74] Lopez M., Kohler S., Winum J.Y., Zinc metalloenzymes as new targets against the bacterial pathogen Brucella, J. Innorg. Biochem., 2011, 111, 138–145 http://dx.doi.org/10.1016/j.jinorgbio.2011.10.019 [CrossRef]

  • [75] Manallack D.T., Crosby Y., Khakham Y., Capuano B., Platensimycin: A promising antimicrobial targeting fatty acid synthesis, Curr. Med. Chem., 2008, 15, 705–710 http://dx.doi.org/10.2174/092986708783885255 [CrossRef]

  • [76] Banevicius M.A., Kaplan N, Hafkin B., Nicolau D.P., Pharmacokinetics, pharmacodynamics and efficacy of novel FabI inhibitor AFN-1252 against MSSA and MRSA in the murine thigh infection model, J. Chemother., 2013, 25, 26–31 http://dx.doi.org/10.1179/1973947812Y.0000000061 [CrossRef]

  • [77] Falconer S.B., Brown E.D., New screens and targets in antibacterial drug discovery, Curr. Opin. Microbiol., 2009, 12, 497–504 http://dx.doi.org/10.1016/j.mib.2009.07.001 [CrossRef]

  • [78] Merril C.R., Scholl D., Adhya S.L., The prospect for bacteriophage therapy in Western medicine., Nat. Rev. Drug Discov., 2003, 2, 489–497 http://dx.doi.org/10.1038/nrd1111 [CrossRef]

  • [79] Ghannad M.S., Mohammadi A., Bacteriophage: Time to re-evaluate to potential of phage therapy as a promising agent to control multidrug-resistant bacteria, Iran. J. Basic Med. Sci., 2012, 15, 693–701

  • [80] Coates A.R., Hu Y., Novel approaches to developing new antibiotics for bacterial infections, British J. Pharmac., 2007, 152, 1147–1154 http://dx.doi.org/10.1038/sj.bjp.0707432 [CrossRef]

  • [81] Dabrowska K., Switala-Jelen K., Opolski A., Weber-Dabrowska B., Gorski A., Bacteriophage penetration in vertebrates, J. Appl. Microbiol., 2005, 98, 7–13 http://dx.doi.org/10.1111/j.1365-2672.2004.02422.x [CrossRef]

  • [82] Smet K.D., Contreras R., Human antimicrobial peptides: defensins, cathelicidins and histatins, Biotechnol. Lett., 2005, 27, 1337–1347 http://dx.doi.org/10.1007/s10529-005-0936-5 [CrossRef]

  • [83] Wang G., Li X., Wang Z., APD2: the updated antimicrobial peptide database and its application in peptide design, Nucl. Acids Res., 2009, 37, D933–D937 http://dx.doi.org/10.1093/nar/gkn823 [CrossRef]

  • [84] Bals R., Epithelial antimicrobial peptides in host defense against infection, Respir. Res., 2000, 1, 141–150 http://dx.doi.org/10.1186/rr25 [CrossRef]

  • [85] Kavanagh K., Dowd S., Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol., 2004, 56, 285–289 http://dx.doi.org/10.1211/0022357022971 [CrossRef]

  • [86] White S.H., Wimley W.C., Selsted M.E., Structure, function, and membrane integration of defensins, Curr. Opin. Struct. Biol., 1995, 5, 521–527 http://dx.doi.org/10.1016/0959-440X(95)80038-7 [CrossRef]

  • [87] Baltzer S.A., Brown M.H., Antimicrobial peptides-Promising Alternatives to Conventional Antibiotics, J. Mol Microbiol Biotechnol, 2011, 20, 228–235 http://dx.doi.org/10.1159/000331009 [CrossRef]

  • [88] Svetoch E.A., Eruslanov B.V., Levchuk V.P., Isolation of Lactobacillus salivarius 1077 (NRLB-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum, Appl. Environ. Microbiol., 2011, 77, 2749–2754 http://dx.doi.org/10.1128/AEM.02481-10

  • [89] Cleveland J., Montville T.J, Nes I.F., Chikindas M.L., Bacteriocins: safe, natural antimicrobials for food preservation, Int. J. Food Microbiol., 2001, 4, 1–20 http://dx.doi.org/10.1016/S0168-1605(01)00560-8 [CrossRef]

  • [90] Gill A., Scanlon T.C., Osipovitch D.C., Madden D.R., Griswold K.E., Crystal structure of a charge engineered human lysozyme having enhanced bactericidal activity, PLoS ONE, 2011, 6, e16788 http://dx.doi.org/10.1371/journal.pone.0016788 [CrossRef]

  • [91] Koon H.W., Shih D.Q., Hing T.C., Yoo J.H., Ho S., Chen X., et al., Human monoclonal antibodies against Clostridium difficile toxin A and B inhibit inflammatory and histologic responses to toxins A and B in human colon and peripheral blood monocytes, Antimicrob. Agents Chemother., 2013, 57, 3214–3223 http://dx.doi.org/10.1128/AAC.02633-12 [CrossRef]

  • [92] François B., Luyt C.E., Dugard A., Wolff M., Diehl J.L., Jaber S., Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial, Crit. Care Med., 2012, 40, 2320–2326 http://dx.doi.org/10.1097/CCM.0b013e31825334f6 [CrossRef]

  • [93] Fadli M., Saad A., Sayadi S., Chevalier J., Mezrioui N.E., Pagès J.M., et al., Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection — bacteria and their synergistic potential with antibiotics, Phytomedicine, 2012, 19, 464–471 http://dx.doi.org/10.1016/j.phymed.2011.12.003 [CrossRef]

  • [94] Hu Z.Q., Zhao W.H., Yoda Y., Asano N., Hara Y., Shimamura T., Additive, indifferent and antagonistic effects in combinations of epigallocatechin gallate with 12 non-beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus, J. Antimicrob. Chemother., 2002, 50, 1051–1054 http://dx.doi.org/10.1093/jac/dkf250

  • [95] Grayson M.L, Heymann D., Pittet D., The evolving threat of antimicrobial resistance. Introduction, Chapter 1, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html

  • [96] Grundmann H., O’Brien T.F., Stelling J.M., Surveillance to track antimicrobial use and resistance, Chapter 2, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html

  • [97] Cars O., Heddini A., Measures to ensure better use of antibiotics, Chapter 3, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html

  • [98] Cookson B., Gastmeier P., Seto W.H., Prevention and control of infection in the health care facilities, Chapter 5, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html

  • [99] Chang S., So A., Fostering Innovation to Combat Antimicrobial Resistance, Chapter 6, In: The evolving threat of antimicrobial resistance: options for action, World Health Organization, 2012, http://www.who.int/patientsafety/implementation/amr/publication/en/index.html

  • [100] Gilbert D.N., Guidos R.J., Boucher H.W., Talbot G.H., Spellberg B., Edwards Jr J.E., et al, The 10×20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020, Infectious Diseases Society of America, Clin. Infect. Dis., 2010, 50, 1081–1083 http://dx.doi.org/10.1086/652237

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Federica Paladini, Mauro Pollini, Alessandro Sannino, and Luigi Ambrosio
Biomacromolecules, 2015, Page 150617083645001
[2]
Claudia Monteiro, Marina Pinheiro, Mariana Fernandes, Sílvia Maia, Catarina L. Seabra, Frederico Ferreira-da-Silva, Salette Reis, Paula Gomes, and M. Cristina L. Martins
Molecular Pharmaceutics, 2015, Page 150611192244005
[3]
Steven M. Wales, Katherine A. Hammer, Amy M. King, Andrew J. Tague, Dena Lyras, Thomas V. Riley, Paul A. Keller, and Stephen G. Pyne
Org. Biomol. Chem., 2015, Volume 13, Number 20, Page 5743
[4]
M. Ozgo
Journal of Molluscan Studies, 2014, Volume 80, Number 3, Page 286
[5]
Cristina de Souza Mendes and Adelaide de Souza Antunes
Antibiotics, 2013, Volume 2, Number 4, Page 500

Comments (0)

Please log in or register to comment.