Jump to ContentJump to Main Navigation

Open Life Sciences

formerly Central European Journal of Biology

1 Issue per year

IMPACT FACTOR increased in 2014: 0.710
5-year IMPACT FACTOR: 0.782

SCImago Journal Rank (SJR) 2014: 0.274
Source Normalized Impact per Paper (SNIP) 2014: 0.518
Impact per Publication (IPP) 2014: 0.773

Open Access


From macro to lab-scale: Changes in bacterial community led to deterioration of EBPR in lab reactor

1Faculty of Environmental Engineering, Department of Biology, Warsaw University of Technology, 00-653, Warsaw, Poland

2Samsung Electronics, Poland R&D Center, 00-640, Warsaw, Poland

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 8, Issue 2, Pages 130–142, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-013-0116-2, December 2012

Publication History

Published Online:


A laboratory scale sequencing batch reactor (SBR), fed with synthetic wastewater containing a mixture of organic compounds, was operated for nearly six months. Despite maintaining the same operational conditions, a deterioration of enhanced biological phosphorus removal (EBPR) occurred after 40 days of SBR operation. The Prel/Cupt ratio decreased from 0.28 to 0.06 P-mol C-mol−1, and C requirements increased from 11 to 32 mg C h−1 g−1 of mixed liquor suspended solids. A FISH analysis showed that the percentage of Accumulibacter in an overall community of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) dropped from 93% to 13%. An increase in abundance of Gammaproteobacteria (from 2.6% to 22%) and Alphaproteobacteria (from 1.8% to 10%) was observed. The number of Competibacter increased from 0.5% to nearly 9%. Clusters 1 and 2 of Defluviicoccus-related GAOs, not detected before deterioration, constituted 35% and 27% of Alphaproteobacteria, respectively. We concluded that lab-scale experiments should not be extended implicitly to full-scale EBPR systems because some bacterial groups are detected mainlyin lab-scale reactors. Well-defined, lab-scale operational conditions reduce the number of ecological niches available to bacteria.

Keywords: Polyphosphate accumulating organism (PAO); Glycogen accumulating organism (GAO); Microbial ecology

  • [1] Seviour R.J., Mino T., Onuki M., The microbiology of biological phosphorus removal in activated sludge systems, FEMS Microbiol. Rev., 2003, 27, 99–127 http://dx.doi.org/10.1016/S0168-6445(03)00021-4 [CrossRef]

  • [2] Fukushima T., Uda N., Okamoto M., Onuki M., Satoh H., Mino T., Abundance of Candidatus ‘Accumulibacter phosphatis’ in enhanced biological phosphorus removal activated sludge acclimatized with different carbon sources, Microbes Environ., 2007, 22, 346–354 http://dx.doi.org/10.1264/jsme2.22.346 [CrossRef]

  • [3] Gebremariam S.Y., Beutel M.W., Christian D., Hess T.F., Research advances and challenges in the microbiology of enhanced biological phosphorus removal—a critical review, Water Environ. Res., 2011, 83, 195–219 http://dx.doi.org/10.2175/106143010X12780288628534 [CrossRef]

  • [4] Oehmen A., Lemos P.C., Carvalho G., Yuan Z., Keller J., Blackall L.L., et al., Advances in enhanced biological phosphorus removal: From micro to macro scale, Water Res., 2007, 41, 2271–2300 http://dx.doi.org/10.1016/j.watres.2007.02.030 [CrossRef]

  • [5] Okunuki S., Kawaharasaki M., Tanaka H., Kanagawa T., Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor, Water Res., 2004, 38, 2433–2439 http://dx.doi.org/10.1016/j.watres.2004.02.008 [CrossRef]

  • [6] Satoh H., Ichihashi O., Onuki M., Mino T., Deterioration patterns of laboratory activated sludge processes intended for enhanced biological phosphorus removal, ARI Bull. Istanbul Techn. Univ., 2007, 55, 119–127

  • [7] Saunders A.M., Oehmen A., Blackall L.L., Yuan Z., Keller J., The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants, Water Sci. Technol., 2003, 47, 37–43

  • [8] Cech J.S., Hartman P., Glucose induced break down of enhanced biological phosphate removal, Environ. Technol., 1990, 11, 651–656 http://dx.doi.org/10.1080/09593339009384907 [CrossRef]

  • [9] Kong Y.H., Ong S.L., Ng W.J., Liu W.T., Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes, Environ. Microbiol., 2002, 4, 753–757 http://dx.doi.org/10.1046/j.1462-2920.2002.00357.x [CrossRef]

  • [10] Nielsen A.T., Liu W.-T., Filipe C., Grady L., Molin M., Stahl D.A., Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor, Appl. Environ. Microbiol., 1999, 65, 1251–1258

  • [11] Meyer R.L., Saunders A.M., Blackall L.L., Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing, Microbiology, 2006, 152, 419–429 http://dx.doi.org/10.1099/mic.0.28445-0 [CrossRef]

  • [12] Wong M.-T., Tan F.M., Ng W.J., Liu W.-T., Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes, Microbiology, 2004, 150, 3741–3748 http://dx.doi.org/10.1099/mic.0.27291-0 [CrossRef]

  • [13] McIlroy S., Seviour R.J., Elucidating further phylogenetic diversity among the Defluviicoccus-related glycogen-accumulating organisms in activated sludge, Environ. Microbiol. Rep., 2009, 1, 563–568 http://dx.doi.org/10.1111/j.1758-2229.2009.00082.x [CrossRef]

  • [14] McIlroy S.J., Nittami T, Seviour E.M., Seviour R.J., Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen-accumulating organism in activated sludge, FEMS Microbiol. Ecol., 2010, 74, 248–256 http://dx.doi.org/10.1111/j.1574-6941.2010.00934.x [CrossRef]

  • [15] He S., Gall D.L., McMahon K.D., “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes, Appl. Environ. Microbiol., 2007, 73, 5865–5874 http://dx.doi.org/10.1128/AEM.01207-07 [CrossRef]

  • [16] Peterson S.B., Warnecke F., Madejska J., McMahon K.D., Hugenholtz P., Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal, Environ. Microbiol., 2008, 10, 2692–2703 http://dx.doi.org/10.1111/j.1462-2920.2008.01690.x [CrossRef]

  • [17] Kong Y.H., Nielsen J.L., Nielsen P.H., Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants, Appl. Environ. Microbiol., 2005, 71, 4076–4085 http://dx.doi.org/10.1128/AEM.71.7.4076-4085.2005 [CrossRef]

  • [18] Nguyen H.T., Le V.Q., Hansen A.A., Nielsen J.L., Nielsen P.H., High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems, FEMS Microbiol. Ecol., 2011, 76, 256–267 http://dx.doi.org/10.1111/j.1574-6941.2011.01049.x [CrossRef]

  • [19] Nielsen P.H., Mielczarek A.T., Kragelund C., Nielsen J.L., Saunders A.M., Kong Y., et al., A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants, Water Res., 2010, 44, 5070–5088 http://dx.doi.org/10.1016/j.watres.2010.07.036 [CrossRef]

  • [20] Brdjanovic D., Slamet A., van Loosdrecht M.C.M., Hooijmans C.M., Alaerts G.J., Heijnen J.J., Impact of excessive aeration on biological phosphorus removal from wastewater, Water Res., 1997, 32, 200–208 http://dx.doi.org/10.1016/S0043-1354(97)00183-8 [CrossRef]

  • [21] Mulkerrins D., Dobson A.D., Colleran E., Parameters affecting biological phosphate removal from wastewaters, Environ. Int., 2004, 30, 249–259 http://dx.doi.org/10.1016/S0160-4120(03)00177-6 [CrossRef]

  • [22] Wang J.C., Park J.K., Effect of anaerobic-aerobic contact time on the change of internal storage energy in two different phosphorus-accumulating organisms, Water Environ. Res., 2011, 73, 436–443 http://dx.doi.org/10.2175/106143001X139489 [CrossRef]

  • [23] Botton S., van Heusden M., Parsons J.R., Smidt H., van Straalen N., Resilience of microbial systems towards disturbances, Crit. Rev. Microbiol., 2006, 32, 101–112 http://dx.doi.org/10.1080/10408410600709933 [CrossRef]

  • [24] Curtis T.P., Head I.M., Graham D.W., Theoretical ecology for engineering biology, Environ. Sci. Technol., 2003, 37, 64A–70A http://dx.doi.org/10.1021/es0323493 [CrossRef]

  • [25] Konopka A., What is microbial community ecology? ISME J., 2009, 3, 1223–1230 http://dx.doi.org/10.1038/ismej.2009.88 [CrossRef]

  • [26] Wojnowska-Baryła I., Cydzik-Kwiatkowska A., Zielińska M., The application of molecular techniques to the study of wastewater treatment systems, In: Cummings S.P. (Ed.), Bioremediation: Methods and Protocols, Methods in Molecular Biology. Vol. 599, Humana Press, 2010

  • [27] Dai Y., Yuan Z., Wang X., Oehmen A., Keller J., Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources, Water Res., 2007, 41, 1885–1896 http://dx.doi.org/10.1016/j.watres.2007.01.045 [CrossRef]

  • [28] Kong Y.H., Beer M., Rees G.N., Seviour R.J., Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios, Microbiol.-SGM., 2002, 148, 2299–2307

  • [29] Lu H., Oehmen A., Virdis B., Keller J., Yuan Z.G., Obtaining highly enriched cultures of Candidatus Accumulibacter phosphatis through alternating carbon sources, Water Res., 2006, 40, 3838–3848 http://dx.doi.org/10.1016/j.watres.2006.09.004 [CrossRef]

  • [30] Oehmen A., Vives M.T., Lu H., Yuan Z., Keller J., The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms, Water Res., 2005, 39, 3727–3737 http://dx.doi.org/10.1016/j.watres.2005.06.031 [CrossRef]

  • [31] Oehmen A., Yuan Z.G., Blackall L.L., Keller J., Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms, Biotechnol. Bioeng., 2005, 91, 162–168 http://dx.doi.org/10.1002/bit.20500 [CrossRef]

  • [32] Oehmen A., Zeng R.J., Yuan Z., Keller J., Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems, Biotechnol. Bioeng., 2005, 91, 43–53 http://dx.doi.org/10.1002/bit.20480 [CrossRef]

  • [33] Oehmen A., Saunders A.M., Vives M.T., Yuan Z., Keller J., Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources, J. Biotechnol., 2006, 123, 22–32 http://dx.doi.org/10.1016/j.jbiotec.2005.10.009 [CrossRef]

  • [34] Tsai C.S., Liu W.T., Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems, Water Sci. Technol., 2002, 46, 179–184

  • [35] Klimiuk E., Wojnowska-Baryła I., Kuczajowska-Zadrożna M., The influence of hydraulic retention time on the effectiveness of phosphate compounds removal in the Phoredox system, Acta Academie Agriculturae AC Technicae Olstenensis, 1996, 44, 55–70, (in Polish)

  • [36] Bond P.L., Erhart R., Wagner M., Keller J., Blackall L.L., Identification of some of the major groups of bacteria in efficient and non-efficient biological phosphorus removal activated sludge systems, Appl. Environ. Microbiol., 1999, 65, 4077–4084

  • [37] Levantesi C., Serafim L.S., Crocetti G.R., Lemos P.C., Rossetti S., Blackall L.L., et al., Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor, Environ. Microbiol., 2002, 4, 559–569 http://dx.doi.org/10.1046/j.1462-2920.2002.00339.x [CrossRef]

  • [38] Clesceri L.S., Greenberg A.E.,. Trussell R.R., Standard methods for the examination of water and wastewater, 17th ed., American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, DC, 1989

  • [39] Nielsen P.H., Daims H., Lemmer H. FISH handbook for biological wastewater treatment, IWA Publishing, London, 2009

  • [40] Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations, Appl. Environ. Microbiol., 1990, 56, 1919–1925

  • [41] Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M., The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set, Syst. Appl. Microbiol., 1999, 22, 434–444 http://dx.doi.org/10.1016/S0723-2020(99)80053-8 [CrossRef]

  • [42] Neef A., Application of in-situ identification of bactyeria for population analysis in complex microbial biocenosis [Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplesen mikrobiellen Biozönosen], PhD thesis, Technical University of Munich, Munich, Germany, 1997 (in German)

  • [43] Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., Phylogenetic oligonucleotide probes for the major sub-classes of Proteobacteria: problems and solutions, Syst. Appl. Microbiol., 1992, 15, 593–600 http://dx.doi.org/10.1016/S0723-2020(11)80121-9 [CrossRef]

  • [44] Lücker S., Steger D., Kjeldsen K.U., MacGregor B.J., Wagner M., Loy A., Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization, J. Microbiol. Meth., 2007, 69, 523–528 http://dx.doi.org/10.1016/j.mimet.2007.02.009 [CrossRef]

  • [45] Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H., In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA- targeted oligonucleotides, Microbiology, 1994, 140, 2849–2858 http://dx.doi.org/10.1099/00221287-140-10-2849 [CrossRef]

  • [46] Crocetti G.R., Hugenholtz P., Bond P.L., Schuler A., Keller J., Jenkins D., et al., Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation, Appl. Environ. Microbiol., 2000, 66, 1175–1182 http://dx.doi.org/10.1128/AEM.66.3.1175-1182.2000 [CrossRef]

  • [47] Collins T.J., ImageJ for microscopy, Biotechniques, 2007, 43, 25–30 http://dx.doi.org/10.2144/000112517 [CrossRef]

  • [48] Burow L.C., Kong Y.H., Nielsen J.L., Blackall L.L., Nielsen P.H., Abundance and ecophysiology of Defluviicoccus spp, glycogen accumulating organisms in full-scale wastewater treatment processes, Microbiol.-SGM., 2007, 153, 178–185 http://dx.doi.org/10.1099/mic.0.2006/001032-0 [CrossRef]

  • [49] Kong Y.H., Beer M., Seviour R.J., Lindrea K.C., Rees G.N., Structure and functional analysis of the microbial community in an aerobic: anaerobic sequencing batch reactor (SBR) with no phosphorus removal, Syst. Appl. Microbiol., 2001, 24, 597–609 http://dx.doi.org/10.1078/0723-2020-00075 [CrossRef]

  • [50] Kong Y.H., Xia Y., Nielsen J.L., Nielsen P.H., Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full scale EBPR wastewater treatment plants, Environ. Microbiol., 2006, 8, 479–489 http://dx.doi.org/10.1111/j.1462-2920.2005.00914.x [CrossRef]

  • [51] Hesselmann R.P., Werlen C., Hahn D., van der Meer J.R., Zehnder A.J., Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 1999, 22, 454–465 http://dx.doi.org/10.1016/S0723-2020(99)80055-1 [CrossRef]

  • [52] Flowers J.J., He S., Yilmaz S., Noguera D.R., McMahon K.D., Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘Candidatus Accumulibacter’ clades, Environ. Microbiol. Rep., 2009, 1, 583–588 http://dx.doi.org/10.1111/j.1758-2229.2009.00090.x [CrossRef]

  • [53] He S., Gu A.Z., McMahon K.D., Fine-scale differences between Accumulibacter-like bacteria in enhanced biological phosphorus activated sludge, Water Sci. Technol., 2006, 54, 111–117 [CrossRef]

  • [54] Gu A.Z., Saunders A., Neethling J.B., Stensel H.D., Blackall L.L., Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States, Water Environ. Res., 2008, 80, 688–698 http://dx.doi.org/10.2175/106143008X276741 [CrossRef]

  • [55] Seviour R.J., Nielsen P.H. (Eds.), Microbial ecology of activated sludge, IWA Publishing, London, 2010

  • [56] López-Vázquez C.M., Hooijmans C.M., Brdjanovic D., Gijzen H.J., Van Loosdrecht M.C.M., Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands, Water Res., 2008, 42, 2349–2360 http://dx.doi.org/10.1016/j.watres.2008.01.001 [CrossRef]

  • [57] Okunuki S., Nakamura K., Kawaharasaki M., Tanaka H., Uchiyama H., Noda N., Quantification of Rhodocyclus-related and Actinobacterial polyphosphate-accumulating organisms in an enhanced biological phosphorus removal process using quenching probe PCR, Microbes Environ., 2007, 22, 106–115 http://dx.doi.org/10.1264/jsme2.22.106 [CrossRef]

  • [58] Wittebolle L., Marzorati M., Clement L., Balloi A., Daffonchio D., Heylen K., et al., Initial community evenness favours functionality under selective stress, Nature, 2009, 458, 623–626 http://dx.doi.org/10.1038/nature07840 [CrossRef]

  • [59] Marzorati M., Wittebolle L., Boon N., Daffonchio D., Verstraete W., How to get more out of molecular fingerprints: practical tools for microbial ecology, Environ. Microbiol., 2008, 10, 1571–1581 http://dx.doi.org/10.1111/j.1462-2920.2008.01572.x [CrossRef]

  • [60] Wong M.-T., Mino T., Seviour R.J., Onuki M., Liu W.T., In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan, Water Res., 2005, 39, 2901–2914 http://dx.doi.org/10.1016/j.watres.2005.05.015 [CrossRef]

  • [61] Beer M., Stratton H.M., Griffiths P.C., Seviour R.J., Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?, J. Appl. Microbiol., 2006, 100, 233–243 http://dx.doi.org/10.1111/j.1365-2672.2005.02784.x [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. Muszyński and A. Miłobędzka
International Journal of Environmental Science and Technology, 2015
A. Muszyński, A. Tabernacka, and A. Miłobędzka
International Biodeterioration & Biodegradation, 2015, Volume 100, Page 44
Ilunga Kamika, Martie Coetzee, Bhekie Mamba, Titus Msagati, and Maggy Momba
International Journal of Environmental Research and Public Health, 2014, Volume 11, Number 3, Page 2876

Comments (0)

Please log in or register to comment.