Jump to ContentJump to Main Navigation

Open Life Sciences

formerly Central European Journal of Biology

1 Issue per year


IMPACT FACTOR increased in 2014: 0.710
5-year IMPACT FACTOR: 0.782

SCImago Journal Rank (SJR) 2014: 0.274
Source Normalized Impact per Paper (SNIP) 2014: 0.518
Impact per Publication (IPP) 2014: 0.773

Open Access
VolumeIssuePage

Issues

Heterogeneity of neural crest-derived melanocytes

1Department of Embryology, Medical University of Gdansk, 80-210, Gdansk, Poland

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Life Sciences. Volume 8, Issue 4, Pages 315–330, ISSN (Online) 2391-5412, DOI: 10.2478/s11535-013-0141-1, February 2013

Publication History

Published Online:
2013-02-09

Abstract

The majority of melanocytes originate from the neural crest cells (NCC) that migrate, spread on the whole embryo’s body to form elements of the nervous system and skeleton, endocrinal glands, muscles and melanocytes. Human melanocytes differentiate mainly from the cranial and trunk NCC. Although melanocyte development has traditionally been associated with the dorsally migrating trunk NCC, there is evidence that a part of melanocytes arise from cells migrating ventrally. The ventral NCC differentiate into neurons and glia of the ganglia or Schwann cells. It has been suggested that the precursors for Schwann cells differentiate into melanocytes. As melanoblasts travel through the dermis, they multiply, follow the process of differentiation and invade the forming human fetal epidermis up to third month. After birth, melanocytes lose the ability to proliferate, except the hair melanocytes that renew during the hair cycle. The localization of neural crest-derived melanocytes in non-cutaneous places e.g. eye (the choroid and stroma of the iris and the ciliary body), ear (cells of the vestibular organ, cochlear stria vascularis), meninges of the brain, heart seems to indicate that repertoire of melanocyte functions is much wider than we expected e.g. the protection of tissues from potentially harmful factors (e.g. free radicals, binding toxins), storage ions, and anti-inflammatory action.

Keywords: Neural crest cells; Melanocytes origin; Skin melanocytes; Ocular melanocytes; Ear melanocytes; Epidermal melanin unit

  • [1] Fitzpatrick T., Becker S.W., Lerner A.B., Montgomery H., Tyrosinase in human skin: Demonstration of its presence and its role in human melanin formation, Science, 1950, 112, 223–225 http://dx.doi.org/10.1126/science.112.2904.223

  • [2] Nordlund J.J., Boissy R.E., Hearing V.J., King R.A, Ortonne J.P., The Pigmentary System. Physiology and Pathophysiology, Oxford University Press, New York, 1998

  • [3] Halaban R., Hebert D.N., Fisher D.E., Biology of Melanocytes, In: Freedberg I.M., Wolff K., Austen K.F., Goldsmith L.A., Katz S.I. (Eds.), Fitzpatrick’s Dermatology in General Medicine, McGraw-Hill, New York, 2003

  • [4] Aoki H., Yamada Y., Hara A., Kunisada T., Two distinct types of mouse melanocyte: differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes, Development., 2009, 136, 2511–2521 http://dx.doi.org/10.1242/dev.037168

  • [5] Colombo S., Berlin I., Delmas V., Larue L., Classical and nonclassical melanocytes in vertebrates, In: Borovansky J., Riley P.A., (Eds.), Melanins and melanosomes. Biosynthesis, biogenesis, physiological and pathological functions, Willey-Blackwell, iWeinheim, 2011

  • [6] Rawles M.E., Origin of pigment cells from neural crest in the mouse embryo, Physiol. Zool., 1947, 20, 248–270

  • [7] O’Rahilly R., Müller F., The development of the neural crest in the human, J. Anat., 2007, 211, 335–351 http://dx.doi.org/10.1111/j.1469-7580.2007.00773.x

  • [8] Harris M.L., Erickson C.A., Lineage specification in neural crest cell path finding, Dev. Dyn., 2007, 236, 1–19 http://dx.doi.org/10.1002/dvdy.20919

  • [9] Betters E., Liu Y., Kjaeldgaard A., Sundström E., García-Castro MI., Analysis of early human neural crest development, Dev. Biol., 2010, 344, 578–592 http://dx.doi.org/10.1016/j.ydbio.2010.05.012

  • [10] Theveneau E., Mayor R., Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration, Dev. Biol., 2012, 366, 34–54 http://dx.doi.org/10.1016/j.ydbio.2011.12.041

  • [11] Le Douarin N.M., Creuzet S., Couly G., Dupin E., Neural Crest Cell plasticity and its limits, Development, 2004, 131, 4637–4650 http://dx.doi.org/10.1242/dev.01350

  • [12] Ernfors P., Cellular origin and developmental mechanisms during the formation of skin melanocytes, Exp. Cell Res., 2010, 316, 1397–1407 http://dx.doi.org/10.1016/j.yexcr.2010.02.042

  • [13] Lu Y., Zhu W.Y., Tan C., Yu G.H., Gu J.X., Melanocytes are potential immunocompetent cells: evidence from recognition of immunological characteristics of cultured human melanocytes, Pigment Cell Res., 2002, 15, 454–460 http://dx.doi.org/10.1034/j.1600-0749.2002.02065.x

  • [14] Slominski A., Paus R., Are L-tyrosine and L-dopa hormone-like bioregulators?, J. Theor. Biol., 1990, 143, 123–138 http://dx.doi.org/10.1016/S0022-5193(05)80292-9

  • [15] Slominski A., Paus R., Schadendorf D., Melanocytes as “sensory” and regulatory cells in the epidermis, J. Theor. Biol., 1993, 164, 103–120 http://dx.doi.org/10.1006/jtbi.1993.1142

  • [16] Schallreuter K.U., Lemke K.R., Pittelkow M.R., Wood J.M., Körner C., Malik R., Catecholamines in human keratinocyte differentiation, J. Invest. Dermatol., 1995, 104, 953–957 http://dx.doi.org/10.1111/1523-1747.ep12606218

  • [17] Grando S.A., Pittelkow M.R., Schallreuter K.U., Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance., J. Invest. Dermatol., 2006, 126, 1948–1965 http://dx.doi.org/10.1038/sj.jid.5700151

  • [18] Slominski A., Wortsman J., Luger T., Paus R., Solomon S., Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress, Physiol. Rev., 2000, 80, 979–1020

  • [19] Slominski A., Wortsman J., Neuroendocrinology of the skin, Endocr. Rev., 2000, 21, 457–487 http://dx.doi.org/10.1210/er.21.5.457

  • [20] Slominski A., Wortsman J., Tobin D.J., The cutaneous serotoninergic/melatoninergic system: securing a place under the sun, FASEB J., 2005, 19, 176–194 http://dx.doi.org/10.1096/fj.04-2079rev

  • [21] Slominski A., Neuroendocrine activity of the melanocyte, Exp. Dermatol., 2009, 18, 760–763 http://dx.doi.org/10.1111/j.1600-0625.2009.00892.x

  • [22] Slominski A.T., Zmijewski M.A., Skobowiat C., Zbytek B., Slominski R.M., Steketee J.D., Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system, Adv. Anat. Embryol. Cell Biol., 2012, 212, 1–115 http://dx.doi.org/10.1007/978-3-642-19683-6_1

  • [23] Tachibana M., Sound needs sound melanocytes to be heard, Pigment Cell Res., 1999, 12, 344–354 http://dx.doi.org/10.1111/j.1600-0749.1999.tb00518.x

  • [24] Mjaatvedt C.H., Kern C.B., Norris R.A., Fairey S., Cave C.L., Normal distribution of melanocytes in the mouse heart, Anat. Rec. Discov. Mol. Cell. Evol. Biol., 2005, 285, 748–757 http://dx.doi.org/10.1002/ar.a.20210

  • [25] Goldgeier M,H,, Klein L.E., Klein-Angerer S., Moellmann G., Nordlund J.J., The distribution of melanocytes in the leptomeninges of the human brain., J. Invest. Dermatol., 1984, 82, 235–238 http://dx.doi.org/10.1111/1523-1747.ep12260111

  • [26] Cramer S.F., The histogenesis of acquired melanocytic nevi-based on a new concept of melanocytic differentiation, Am. J. Dermatopathol., 1984, 6, 289–298

  • [27] Cramer S.F., Stem cells for epidermal melanocytesa challenge for students of dermatology, Am. J. Dermatopathol., 2009, 31, 331–341 http://dx.doi.org/10.1097/DAD.0b013e31819cd0cb

  • [28] Adameyko I., Lallemend F., Aquino J.B., Pereira J.A., Topilko P., Muller T., et al., Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin, Cell, 2009, 139, 366–379 http://dx.doi.org/10.1016/j.cell.2009.07.049

  • [29] Dupin E., Real C., Glavieux-Pardanaud C., Vaigot P., LeDourain N.M., Reversal of developmental restrictions in neural crest cells lineages; transition from Schwann cells to glial-melanocytic precursors in vitro, Proc. Natl. Acad. Sci. USA, 2003, 100, 5229–5233 http://dx.doi.org/10.1073/pnas.0831229100

  • [30] Cramer S.F., Fesyuk A., On the development of neurocutaneous units-implications for the histogenesis of congenital, acquired, and dysplastic nevi, Am. J. Dermatopathol., 2012, 34, 60–81 http://dx.doi.org/10.1097/DAD.0b013e31822d071a

  • [31] Hara M., Toyoda M., Yaar M., Bhawan J., Avila E.M., Penner I.R., et al., Innervation of melanocytes in human skin, J. Exp. Med., 1996, 184, 1385–1395 http://dx.doi.org/10.1084/jem.184.4.1385

  • [32] Holbrook K.A., Underwood R.A., Vogel A.M., Gown A.M., Kimball H., The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by anti melanoma monoclonal antibody HMB-45, Anat. Embryol., 1989, 180, 443–455 http://dx.doi.org/10.1007/BF00305119

  • [33] Gleason B.C., Crum C.P., Murphy G.F., Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts, J. Cutan. Pathol., 2008, 35, 615–622 http://dx.doi.org/10.1111/j.1600-0560.2007.00881.x

  • [34] Zabierowski S.E., Fukunaga-Kalabis M., Li L., Herlyn M., Dermis-derived stem cells: a source of epidermal melanocytes and melanoma? Pigment Cell Melanoma Res., 2011, 24, 422–429 http://dx.doi.org/10.1111/j.1755-148X.2011.00847.x

  • [35] Hirobe T., How are proliferation and differentiation of melanocytes regulated?, Pigment Cell Melanoma Res., 2011, 24, 462–478 http://dx.doi.org/10.1111/j.1755-148X.2011.00845.x

  • [36] Cooper C.D., Raible D.W., Mechanisms for reaching the differentiated state: Insights from neural crest-derived melanocytes, Semin. Cell Dev. Biol., 2009, 20, 105–110 http://dx.doi.org/10.1016/j.semcdb.2008.09.008

  • [37] Sommer L., Generation of melanocytes from neural crest cells, Pigment Cell Melanoma Res., 2011, 24, 411–421 http://dx.doi.org/10.1111/j.1755-148X.2011.00834.x

  • [38] Hari L., Miescher I., Shakhova O., Suter U., Chin L., Taketo M., et al., Temporal control of neural crest lineage generation by Wnt/β-catenin signaling, Development, 2012, 139, 2107–2117 http://dx.doi.org/10.1242/dev.073064

  • [39] Cornell R.A., Eisen J.S., Notch in the pathway: the roles of Notch signaling in neural crest development, Semin. Cell Dev. Biol., 2005, 16, 663–672 http://dx.doi.org/10.1016/j.semcdb.2005.06.009

  • [40] Raible D.W., Ragland J.W., Reiterated Wnt and BMP signals in neural crest development, Semin. Cell Dev. Biol., 2005, 16, 673–682 http://dx.doi.org/10.1016/j.semcdb.2005.06.008

  • [41] Lin J.Y., Fisher D.E., Melanocyte biology and skin pigmentation, Nature, 2007, 445, 843–850 http://dx.doi.org/10.1038/nature05660

  • [42] Clay M.R., Halloran M.C., Regulation of cell adhesions and motility during initiation of neural crest migration, Curr. Opin. Neurobiol., 2011, 21, 17–22 http://dx.doi.org/10.1016/j.conb.2010.09.013

  • [43] Vance K.W., Goding C.R., The transcription network regulating melanocyte development and melanoma, Pigment Cell Res., 2004, 17, 318–325 http://dx.doi.org/10.1111/j.1600-0749.2004.00164.x

  • [44] McGill G.G., Horstmann M., Widlund H.R., Du J., Motyckova G., Nishimura E.K. et al., Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability, Cell, 2002, 109, 707–718 http://dx.doi.org/10.1016/S0092-8674(02)00762-6

  • [45] Yamaguchi Y., Brenner M., Hearing V.J., The regulations of skin pigmentation, J. Biol. Chem., 2007, 13, 1–11

  • [46] Nishimura E.K., Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation, Pigment Cell Melanoma Res., 2011, 24, 401–404 http://dx.doi.org/10.1111/j.1755-148X.2011.00855.x

  • [47] Bennet D.C., Medrano E.E., Molecular regulation of melanocyte senescence, Pigment Cell Res., 2002, 15, 242–250 http://dx.doi.org/10.1034/j.1600-0749.2002.02036.x

  • [48] Rizos H., Becker T.M., Holland E.A., Cell cycle regulation in the melanocyte, In: Thomson J.F., Morton D.L., Kroon B.B.R., Textbook of Melanoma, Martin Dunitz Taylor & Francis Group, London, 2004

  • [49] Nordlund J.J., The lives of pigment cells, Dermatol. Clin., 1986, 4, 407–418

  • [50] Costin G.E., Hearing V.J., Human skin pigmentation: melanocytes modulate skin color in response to stress, FASEB J., 2007, 21, 976–994 http://dx.doi.org/10.1096/fj.06-6649rev

  • [51] Haddad M.M., Xu W., Medrano E.E., Aging in epidermal melanocytes: cell cycle genes and melanins, J. Investig. Dermatol. Symp. Proc., 1998, 3, 36–40

  • [52] Selzer E., Schlagbauer-Wadl H., Okamoto I., Pehamberger H., Pötter R., Jansen B., Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines, Melanoma Res., 1998, 8, 197–203 http://dx.doi.org/10.1097/00008390-199806000-00001

  • [53] Campisi J., The role of cellular senescence in skin aging, J. Investig. Dermatol. Symp. Proc., 1998, 3, 1–5

  • [54] Seiji H., Fitzpatrick T.B., The reciprocal relationship between melanization and tyrosinase activity in melanosomes (melanin granules), J. Biochem., 1961, 49, 700–706

  • [55] Simon D.J., Peles D., Wakamatsu K., Ito S., Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology and function, Pigment Cell Melanoma Res., 2009, 22, 563–579 http://dx.doi.org/10.1111/j.1755-148X.2009.00610.x

  • [56] Pathak M.A., Rilley F.C., Fitzpatrick T.B., Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light., J. Invest. Dermatol., 1962, 39, 435–443

  • [57] Riley P.A., Melanin., Int. J. Biochem. Cell Biol., 1997, 29, 1235–1239 http://dx.doi.org/10.1016/S1357-2725(97)00013-7

  • [58] Slominski A., Tobin D.J., Shibahara S., Wortsman J., Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 2004, 84, 1155–1228 http://dx.doi.org/10.1152/physrev.00044.2003

  • [59] Bush W.D., Simon J.D., Quantification of Ca(2+) binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis, Pigment Cell Res., 2007, 20, 134–139 http://dx.doi.org/10.1111/j.1600-0749.2007.00362.x

  • [60] Ito S., High-performance liquid chromatography (HPLC) analysis of eu- and pheomelanin in melanogenesis control, J. Invest. Dermatol., 1993, 100, 166–171 http://dx.doi.org/10.1111/1523-1747.ep12462792

  • [61] Fitzpatrick T.B., Miyamoto M., Ishikawa K., The evolution of concepts of melanin biology, Arch. Dermatol., 1967, 96, 305–323 http://dx.doi.org/10.1001/archderm.1967.01610030083015

  • [62] Hearing V.J., Tsukamoto K., Enzymatic control of pigmentation in mammals, FASEB J., 1991, 5, 2902–2909

  • [63] Hoashi T., Watabe H., Muller J., Yamaguchi Y., Vieira W.D., Hearing V.J., MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes, J. Biol. Chem., 2005, 280, 14006–14016 http://dx.doi.org/10.1074/jbc.M413692200

  • [64] Park H.Y., Kasmadaki M., Gilchrest Y.B.A., Cellular mechanisms regulating melanogenesis, Cell Mol. Life Sci., 2009, 66, 1493–1506 http://dx.doi.org/10.1007/s00018-009-8703-8

  • [65] Ito S., The IFPCS presidential lecture: a chemist’s view of melanogenesis, Pigment Cell Res., 2003, 16, 230–236 http://dx.doi.org/10.1034/j.1600-0749.2003.00037.x

  • [66] Pawelek J.M., After dopachrome?, Pigment Cell Res., 1991, 4, 53–62 http://dx.doi.org/10.1111/j.1600-0749.1991.tb00315.x

  • [67] Olivares C., Jiménez-Cervantes C., Lozano J.A. Solano F., García-Borrón J.C., The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase, Biochem. J., 2001, 354, 131–139 http://dx.doi.org/10.1042/0264-6021:3540131

  • [68] Ito S., Wakamatsu K., Chemistry of mixed melanogenesis-pivotal roles of dopaquinone, Photochem. Photobiol., 2008, 84, 582–592 http://dx.doi.org/10.1111/j.1751-1097.2007.00238.x

  • [69] Del Marmol V., Beerman F., Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 1996, 381, 165–168 http://dx.doi.org/10.1016/0014-5793(96)00109-3

  • [70] Korner A.M., Pawelek J., DOPAchrome conversion: a possible control point in melanin biosynthesis, J. Invest. Dermatol., 1980, 75, 192–195 http://dx.doi.org/10.1111/1523-1747.ep12522650

  • [71] Hearing V.J., Determination of melanin synthetic pathway, J. Invest. Dermatol., 2011, 131, 8–11 http://dx.doi.org/10.1038/jid.2010.335

  • [72] Schiaffino M.V., Signalling pathways in melanosome biogenesis and pathology, Int. J. Biochem. Biol., 2010, 42, 1094–1104 http://dx.doi.org/10.1016/j.biocel.2010.03.023

  • [73] Goding C.R., Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage, Genes. Dev., 2000, 14, 1712–1728

  • [74] Park H.Y., Wu C., Yaar M., Stachur C.M., Kosmadaki M., Gilchrest B.A., Role of BMP-4 and its signaling pathways in cultured human melanocytes, Int. J. Cell Biol., 2009, 2009, doi:10.1155/2009/750482

  • [75] Schallreuter K.U., Wood J.M., Pittelkow M.R., Gütlich M., Lemke K.R., Rödl W., et al., Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin, Science, 1994, 263, 1444–1446 http://dx.doi.org/10.1126/science.8128228

  • [76] Hearing V.J., Biogenesis of pigment granules: a sensitive way to regulate melanocyte function, J. Dermatol. Sci., 2005, 37, 3–14 http://dx.doi.org/10.1016/j.jdermsci.2004.08.014

  • [77] Watabe H., Valencia J.C., Le Pape E., Yamaguchi Y., Nakamura M., Rouzaud F., Involvement of dynein and spectrin with early melanosome transport and melanosomal protein trafficking, J. Invest. Dermatol., 2008, 128, 162–173 http://dx.doi.org/10.1038/sj.jid.5701019

  • [78] Raposo G., Tenza D., Murphy D.M., Berson J.F., Marks M.S., Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells, J. Cell Biol., 2001, 152, 809–824 http://dx.doi.org/10.1083/jcb.152.4.809

  • [79] Kushimoto T., Basrur V., Valencia J., Matsunaga J., Vieira W. D., Ferrans V.J., et al., A model for melanosome biogenesis based on the purification and analysis of early melanosomes, Proc. Natl. Acad. Sci. USA., 2001, 98, 10698–10703 http://dx.doi.org/10.1073/pnas.191184798

  • [80] Kondo T., Hearing V.J., Update on the regulation of mammalian melanocyte function and skin pigmentation, Expert. Rev. Dermatol., 2011, 6, 97–108 http://dx.doi.org/10.1586/edm.10.70

  • [81] Busam K.J., Charles C., Lee G., Halpern A.C., Morphologic features of melanocytes, pigment keratinocytes, and melanophages by in vivo confocal scanning laser microscopy, Mod. Pathol., 2001, 14, 862–868 http://dx.doi.org/10.1038/modpathol.3880402

  • [82] Fitzpatrick T.B., Breathnach A.S., The epidermal melanin unit system, Dermatol. Wochenschr., 1963, 147, 481–489

  • [83] Haass N.K., Smalley K.S., Li L., Herlyn M., Adhesion, migration and communications in melanocytes and melanoma, Pigment Cell Res., 2005, 18, 150–159 http://dx.doi.org/10.1111/j.1600-0749.2005.00235.x

  • [84] Miot L.D., Miot H.A., Silva M.G., Marques M.E., Physiopathology of melasma, An. Bras. Dermatol., 2009, 84, 623–635 http://dx.doi.org/10.1590/S0365-05962009000600008

  • [85] Rickelt S., Franke W.W., Doerflinger Y., Goerdt S., Brandner J.M., Peitsch W.K., Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherent junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins, Cell Tissue Res., 2008, 334, 401–422 http://dx.doi.org/10.1007/s00441-008-0704-7

  • [86] Joshi P.G., Nair N., Begum G., Joshi N.B., Sinkar V.P., Vora S., Melanocyte-keratinocyte interaction induces calcium signaling and melanin transfer to keratinocytes, Pigment Cell Res., 2007, 20, 380–384

  • [87] Plonka P.M., Passeron T., Brenner D.J., Tobin S., Shibahara S., Thomas A., What are melanocytes really doing all day long…?, Exp. Dermatol., 2009, 18, 799–819 http://dx.doi.org/10.1111/j.1600-0625.2009.00912.x

  • [88] Choi W., Kolbe L., Hearing V.J., Characterization of the bioactive motif of neuregulin-1, a fibroblastderived paracrine factor that regulates the constitutive color and the function of melanocytes in human skin, Pigment Cell Melanoma Res., 2012, 25, 1–5 http://dx.doi.org/10.1111/j.1755-148X.2012.01002.x

  • [89] Lee A.Y., Role of keratinocytes in the development of vitiligo, Ann. Dermatol., 2012, 24, 115–125 http://dx.doi.org/10.5021/ad.2012.24.2.115

  • [90] Tabone-Eglinger S., Wehrle-Haller M., Aebischer N., Jacquier M.C., Wehrle-Haller B., Membrane bound Kit ligand regulates melanocyte adhesion and survival, providing physical interaction with an intraepithelial niche, FASEB J., 2012, 26, 3738–3753 http://dx.doi.org/10.1096/fj.12-206045

  • [91] Hirobe T., Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes, Pigment Cell Res., 2004, 18, 2–12 http://dx.doi.org/10.1111/j.1600-0749.2004.00198.x

  • [92] Imokawa G., Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders, Pigment Cell Res., 2004, 17, 96–110 http://dx.doi.org/10.1111/j.1600-0749.2003.00126.x

  • [93] Wang Z., Coleman D.J., Bajaj G., Liang X., Ganguli-Indra G., Indra AK., RXRα ablation in epidermal keratinocytes enhances UVR-induced DNA damage, apoptosis, and proliferation of keratinocytes and melanocytes, J. Invest. Dermatol., 2011, 131, 177–187 http://dx.doi.org/10.1038/jid.2010.290

  • [94] Taylor S., Grimes P., Lim J., Im S., Lui H., Postinflammatory hyperpigmentation, J. Cutan. Med. Surg., 2009, 13, 183–191

  • [95] Slominski A., Zmijewski M.A., Pawelek J., L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions, Pigment Cell Melanoma Res., 2012, 25, 14–27 http://dx.doi.org/10.1111/j.1755-148X.2011.00898.x

  • [96] Commo S., Bernard B. A., Melanocyte subpopulation turnover during the human hair cycle: an immunohistochemical study, Pigment Cell Res., 2000, 13, 253–259 http://dx.doi.org/10.1034/j.1600-0749.2000.130407.x

  • [97] Slominski A., Wortsman J., Plonka P.M., Schallreuter K.U., Paus R., Tobin D.J., Hair Follicle Pigmentation, J. Invest. Dermatol., 2005, 124, 13–21 http://dx.doi.org/10.1111/j.0022-202X.2004.23528.x

  • [98] Commo S., Gaillard O., Thibaut S., Bernard B.A., Absence of TRP-2 in melanogenic melanocytes of human hair, Pigment Cell Res., 2004, 17, 488–497 http://dx.doi.org/10.1111/j.1600-0749.2004.00170.x

  • [99] Randall V.A., Androgens and hair growth, Dermatol. Ther., 2008, 21, 314–328 http://dx.doi.org/10.1111/j.1529-8019.2008.00214.x

  • [100] Slominski A., Paus R., Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth, J. Invest. Dermatol., 1993, 101, 90–97 http://dx.doi.org/10.1111/1523-1747.ep12362991

  • [101] Slominski A., Paus R., Plonka P., Chakraborty A., Maurer M., Pruski D., et al., Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle, J. Invest. Dermatol., 1994, 102, 862–869 http://dx.doi.org/10.1111/1523-1747.ep12382606

  • [102] Goding C.R., Melanocytes; the new black, Int. J. Biochem. Cell Biol., 2007, 39, 275–279 http://dx.doi.org/10.1016/j.biocel.2006.10.003

  • [103] Nishimura E., Jordan S.A., Oshima H., Yoshida H., Osawa M., Moriyama M., et al., Dominant role of the niche in melanocyte stem-cell fate determination, Nature, 2002, 416, 854–860 http://dx.doi.org/10.1038/416854a

  • [104] Wan der Werf F., Baljet B., Otto A.J., Pigmentcontaining cells in extraocular tissues of the primate, Doc. Ophthalmol., 1992, 81, 357–368

  • [105] Hu D.N., Simon J., Sarna T., Role of ocular melanin in ophtalmic physiology and pathology, Phatochem. Phatobiol., 2008, 84, 639–644 http://dx.doi.org/10.1111/j.1751-1097.2008.00316.x

  • [106] Sharif N.A., Crider J.Y., Intracellular signaling in human iridial fibroblasts and iridial melanocytes in response to prostaglandins, endothelin, isoproterenol, and other pharmacological agents, Curr. Eye Res., 2011, 36, 310–320 http://dx.doi.org/10.3109/02713683.2010.542869

  • [107] Sarna T.J., Properties and function of the ocular melanin — a photobiophysical view, Photochem. Photobiol. B., 1992, 12, 215–258 http://dx.doi.org/10.1016/1011-1344(92)85027-R

  • [108] Melamed S., Lahav M., Sandbank U., Yassur Y., Ben-Sira I., Fuch’s heterochromic iridocyclitis: an electron microscopic study of the iris, Invest. Ophthalmol. Vis. Sci., 1978, 17, 1193–1199

  • [109] Higa K., Shimmura S., Miyashita H., Shimazaki J., Tsubota K., Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells, Exp. Eye Res., 2005, 81, 218–223 http://dx.doi.org/10.1016/j.exer.2005.01.023

  • [110] Corti A., Recherche sur l’organe des l’ouie des mammiferes. Premiere partie 2 Z. wiss, Zoologie, 1851, 3, 109–169

  • [111] Meyer zum Gottesberge A.M., Calcium dependent intercellular interaction of the neural crest derivate-melanocytes and the epithelial cells of the vestibular organ, Acta. Otolaryngol., 1995, 520, 360–361 http://dx.doi.org/10.3109/00016489509125270

  • [112] Tachibana M., Cochlear melanocytes and MITF signaling, J. Invest. Dermatol. Symp. Proc., 2001, 6, 95–98 http://dx.doi.org/10.1046/j.0022-202x.2001.00017.x

  • [113] Price E.R., Fisher D.E., Sensorineural deafness and pigmentation genes: melanocytes and the Mitf transcriptional network, Neuron, 2001, 30, 15–18 http://dx.doi.org/10.1016/S0896-6273(01)00259-8

  • [114] Suzuki T., Nomoto Y., Nakagawa T., Kuwahat N., Ogawa H., Suzuki Y., et al., Age-dependent degeneration of the stria vascularis in human cochleae, Laryngoscope, 2006, 116, 1846–1850 http://dx.doi.org/10.1097/01.mlg.0000234940.33569.39

  • [115] Wassif G.A., El Begermy M., Age-related changes of the cochlear lateral wall (stria vascularis) in the guinea pigs: an ultrastructural study, Egypt J. Histol., 2008, 31, 332–340

  • [116] Meyer zum Gottesberge A.M., Physiology and pathophysiology of inner ear melanin, Pigment Cell Res., 1988, 1, 238–249 http://dx.doi.org/10.1111/j.1600-0749.1988.tb00422.x

  • [117] Henderson D., McFadden S.L., Liu C.C., Hight N., Zheng X.Y., The role of antioxidants in protection from impulse noise, Ann. N. Y. Acad. Sci., 1999, 884, 368–380 http://dx.doi.org/10.1111/j.1749-6632.1999.tb08655.x

  • [118] Brito F.C., Kos L., Timeline and distribution of melanocyte precursors in the mouse heart, Pigment Cell Melanoma Res., 2008, 21, 464–470 http://dx.doi.org/10.1111/j.1755-148X.2008.00459.x

  • [119] Levin M.D., Lu M.M., Petrenko N.B., Hawkins B.J., Gupta T.H., Lang D., et al., Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers, J. Clin. Invest., 2009, 119, 3420–3436

  • [120] Takeda K., Takahashi N.H., Shibahara S., Neuroendocrine function of melanocytes: beyond the skin-deep melanin maker, Tohoku J. Exp. Med., 2007, 211, 201–221 http://dx.doi.org/10.1620/tjem.211.201

  • [121] Zecca L., Bellei Ch., Costi P., Albertini A., Monzani E., Casella L., New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals, Proc. Natl. Acad. Sci. USA, 2008, 105, 17567–17572 http://dx.doi.org/10.1073/pnas.0808768105

  • [122] Davids L.M., du Toit E., Kidson S.H., Todd G., A rare repigmentation pattern in a vitiligo patient: a clue to an epidermal stem-cell reservoir of melanocytes?, Clin. Exp. Dermatol., 2009, 34, 246–248 http://dx.doi.org/10.1111/j.1365-2230.2008.02793.x

  • [123] Nishimura E.K., Granter S.R., Fisher D.E., Mechanisms of hair graying; incomplete melanocyte stem cell maintance in the niche, Science, 2005, 307, 720–724 http://dx.doi.org/10.1126/science.1099593

  • [124] Toma J.G., McKenzie I.A., Bagli D., Miller F.D., Isolation and characterization of multipotent skinderived precursors from human skin, Stem Cells, 2005, 23, 727–737 http://dx.doi.org/10.1634/stemcells.2004-0134

  • [125] Adameyko I., Lallemend F., Furlan A., Zinin N., Aranda S., Kitambi S.S., et al., Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest, Development, 2012, 139, 397–410 http://dx.doi.org/10.1242/dev.065581

  • [126] Suder E., Bruzewicz S., Melanocytes of fetal dermis — studies with anti-HMB-45 antibody, Med. Sci. Monit., 2004, 10, 229–232

  • [127] Dupin E., Sommer L., Neural crest progenitors and stem cells: From early development to adulthood, Dev. Biol., 2012, 366, 83–95 http://dx.doi.org/10.1016/j.ydbio.2012.02.035

  • [128] Schatton T., Frank M.H., Cancer stem cells and human malignant melanoma, Pigment Cell Melanoma Res., 2007, 21, 39–55 http://dx.doi.org/10.1111/j.1755-148X.2007.00427.x

  • [129] Whiteman D.C., Pavan W.J., Bastian B.C., The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, casual pathways, and cells of origin, Pigment Cell Melanoma Res., 2011, 24, 879–897 http://dx.doi.org/10.1111/j.1755-148X.2011.00880.x

  • [130] Hoek K.S., Goding C.R., Cancer stem cells versus phenotype-switching in melanoma, Pigment Cell Melanoma Res., 2010, 23, 746–759 http://dx.doi.org/10.1111/j.1755-148X.2010.00757.x

Comments (0)

Please log in or register to comment.