Jump to ContentJump to Main Navigation


12 Issues per year

IMPACT FACTOR increased in 2013: 0.696
5-year IMPACT FACTOR: 0.751

SCImago Journal Rank (SJR): 0.306
Source Normalized Impact per Paper (SNIP): 0.555



Chemical composition of the Tatra Mountain lakes: Recovery from acidification

1University of South Bohemia

2Charles University in Prague

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 61, Issue 18, Pages S21–S33, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-006-0117-6, September 2006

Publication History

Published Online:


Ninety-one lakes distributed along the Tatra Mountains (most of lakes > 1 ha and 65% of lakes > 0.01 ha) were sampled and analysed for ionic and nutrient composition in September 2004 (15 years after reduction in acid deposition). Eighty-one lakes were in alpine zone and ten lakes in Norway spruce forest. The results were compared to similar lake surveys from 1994 (the beginning of water recovery from acidification) and 1984 (maximum acidification). Atmospheric deposition of SO42− and inorganic N decreased 57% and 35%, respectively, in this region from the late 1980s to 2000. Lake water concentrations of SO42− and NO3− have decreased both by ∼50% on average (to 23 and 19 μmol L−1, respectively, in 2004) since 1984. While the decrease in SO42− concentrations was stable throughout 1984–2004, most of the NO3− decrease occurred from 1994 to 2004. The declines in SO42− and NO3− concentrations depended on catchment coverage with vegetation, being most rapid for SO42− in forest lakes and for NO3− in rocky lakes. Concentrations of the sum of base cations (dominated by Ca2+) significantly decreased between 1984 and 2004, with the highest change in rocky lakes. Most of this decline occurred between 1994 and 2004. Acid neutralising capacity (ANC) did not change in the 1984–1994 period, but increased on average by 29 μmol L−1 between 1994 and 2004, with the highest change in rocky lakes. Over the last decade, the proportion of lakes with ANC > 150 μmol L−1 increased from 15% to 21% and that of ANC < 20 μmol L−1 decreased from 37% to 20%. The highest decline in H+ and Al concentrations occurred in the most acid lakes. On a regional basis, no significant change was observed for total phosphorus, total organic nitrogen, and dissolved organic carbon (DOC) in the 1994–2004 period. However, these parameters increased in forest lakes, which exhibited an increasing trend in DOC concentrations, inversely related (P < 0.001) to their decreasing ionic strength (30% on average in 1994–2004).

Keywords: Water chemistry; recovery from acidification; long-term trends; nutrients; chlorophyll; Slovakia; Poland

  • [1] Bombówna, M. 1965. Hydrochemical investigations of the Morskie Oko lake and the Czarny Staw lake above the Morskie Oko in the Tatra Mountains, pp. 7–11. In: Starmach, K. (ed.) Limnological Investigations in the Tatra Mountains and Dunajec River Basin, Komitet Zagospodarzovania Ziem Górskych, Zeszyt No 11, Polish Academy of Sciences, Kraków.

  • [2] Bombówna, M. & Wojtan, K. 1996. Zmiany skladu chemicznego wody jezior tatrzańskich na przestrzeni lat [Temporal changes in the water chemistry of the Tatra lakes], pp. 56–59. In: Krzan, Z. (ed.) Przyroda Tatrzanskiego Parku Narodowego a Czlowiek, Tom 3, Wplyw czlowieka, TPN, Kraków-Zakopane, Poland.

  • [3] Chomitz, K. & Šamaj, F. 1974. Zrážkové pomery [Precipitation characteristics], pp. 443–536. In: Konček, M. et al. (eds) Klíma Tatier, Veda, Bratislava.

  • [4] Donahue, W.F., Schindler, D.W., Page, S.J. & Stainton, M.P. 1998. Acid-induced changes in DOC quality in an experimental whole-lake manipulation. Environ. Sci. Technol. 32: 2954–2960. http://dx.doi.org/10.1021/es980306u [CrossRef]

  • [5] Dougan, W.K. & Wilson, A.L. 1974. The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99: 413–430. http://dx.doi.org/10.1039/an9749900413 [CrossRef]

  • [6] Driscoll, C.T. 1984. A procedure for the fractionation of aqueous aluminum in dilute acidic waters. Int. J. Environ. Anal. Chem. 16: 267–284. [CrossRef]

  • [7] Driscoll, C.T. & Postek, K.M. 1996. The chemistry of aluminum in surface waters, pp. 363–418. In: Sposito, G. (ed.) The environmental chemistry of aluminum, Lewis Publishers, Chelsea.

  • [8] Evans, C.D., Cullen, J.M., Alewell, C., Marchetto, A., Moldan, F., Kopáček, J., Prechetel, A., Rogora, M., Veselý, J. & Wright, R.F. 2001. Recovery from acidification in European surface waters. Hydrol. Earth Syst. Sci. 5: 283–297. [CrossRef]

  • [9] Evans, C.D. & Monteith, D.T. 2001. Chemical trends at lakes and streams in the UK Acid Waters Monitoring Network, 1988–2000: Evidence for recent recovery at a national scale. Hydrol. Earth Syst. Sci. 5: 351–366.

  • [10] Fott, J., Pražáková, M., Stuchlík, E. & Stuchlíková, Z. 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47. http://dx.doi.org/10.1007/BF00014625 [CrossRef]

  • [11] Golterman, H.L. & Clymo, R.S. 1969. Methods for chemical analysis of fresh waters. Blackwell, Oxford, 172 pp.

  • [12] Gorek, A. & Kahan, Š. 1973. Prehľad geologického vývoja a stavby Vysokých Tatier [Review of the geological development and structure of the High Tatra Mountains]. Zborník TANAP 15: 5–88.

  • [13] Gregor, V. & Pacl, J. 2005. Hydrológia tatranských jazier [Hydrology of the Tatra Mountain lakes]. Acta Hydrologica Slovaca 6: 161–187.

  • [14] Hecky, R.E., Campbell, P. & Hendzel, L.L. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724. http://dx.doi.org/10.4319/lo.1993.38.4.0709 [CrossRef]

  • [15] Hejzlar, J. & Kopáček, J. 1990. Determination of Low Chemical Oxygen Demand Values in Water by the Dichromate Semi-micro Method. Analyst 115: 1463–1467. http://dx.doi.org/10.1039/an9901501463 [CrossRef]

  • [16] Henriksen, A., Mill, W.A., Kot, M., Rzychon, D. & Wathne, B. 1992. Critical loads of acidity to surface waters: A case study from the Polish Tatra Mountains. Report 29/1992, NIVA, Oslo, 34 pp.

  • [17] Kamenik, C., Schmidt, R., Kum, G. & Psenner, R. 2001. The influence of catchment characteristics on the water chemistry of mountain lakes. Arct. Antarct. Alp. Res. 33: 404–409. http://dx.doi.org/10.2307/1552549 [CrossRef]

  • [18] Konček, M. & Orlicz, M. 1974. Teplotné pomery [Temperature characteristics], pp. 89–179. In: Konček, M. et al. (eds) Klíma Tatier, Veda, Bratislava.

  • [19] Kopáček, J., Borovec, J., Hejzlar, J., Kotorová, I., Stuchlík, E. & Veselý, J. 2006a. Chemical composition of modern and pre-acidification sediments in the Tatra Mountain lakes. Biologia, Bratislava 61,Suppl. 18: S65–S76.

  • [20] Kopáček, J., Hardekopf, D., Majer, M., Pšenáková, P., Stuchlík, E. & Veselý, J. 2004a. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. J. Limnol. 63: 143–156. [CrossRef]

  • [21] Kopáček, J. & Hejzlar, J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53: 173–183. [CrossRef]

  • [22] Kopáček, J., Hejzlar, J., Kaňa, J., Porcal, P. & Klementová, Š. 2003. Photochemical, chemical, and biological transformations of dissolved organic carbon and its impact on alkalinity production in acidified lakes. Limnol. Oceanogr. 48: 106–117.

  • [23] Kopáček, J., Hejzlar, J. & Mosello, R. 2000a. Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Res. 34: 3598–3606. http://dx.doi.org/10.1016/S0043-1354(00)00109-3 [CrossRef]

  • [24] Kopáček, J., Kaňa, J. & Šantrůčková, H. 2006b. Pools and composition of soils in the alpine zone of the Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S35–S49. [CrossRef]

  • [25] Kopáček, J., Kaňa, J., Šantrůčková, H., Picek, T. & Stuchlík, E. 2004b. Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water Air Soil Poll. 153: 307–327. http://dx.doi.org/10.1023/B:WATE.0000019948.23456.14 [CrossRef]

  • [26] Kopáček, J. & Procházková, L. 1993. Semi-micro determination of ammonia in water by the rubazoic acid method. Int. J. Environ. Anal. Chem. 53: 243–248. [CrossRef]

  • [27] Kopáček, J. & Stuchlík, E. 1994. Chemical characteristics of lakes in the High Tatra Mountains, Czechoslovakia. Hydrobiologia 274: 49–56. http://dx.doi.org/10.1007/BF00014626 [CrossRef]

  • [28] Kopáček, J., Stuchlík, E., Straškrabová, V. & Pšenáková, P. 2000b. Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwater Biol. 43: 369–383. http://dx.doi.org/10.1046/j.1365-2427.2000.00569.x [CrossRef]

  • [29] Kopáček, J., Stuchlík, E., Veselý, J., Schaumburg, J., Anderson, I.C., Fott, J., Hejzlar, J. & Vrba, J. 2002. Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water Air Soil Poll., Focus 2: 91–114. http://dx.doi.org/10.1023/A:1020190205652 [CrossRef]

  • [30] Kopáček, J., Veselý, J. & Stuchlík, E. 2001. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrol. Earth Syst. Sci. 5: 391–405. [CrossRef]

  • [31] Lajczak, A. 1996. Hydrologia [Hydrology], pp. 169–196. In: Mirek, Z., Głowaciński, Z., Klimek, K. & Piękoś-Mirkowa H. (eds) Przyroda Tatrzańskiego Parku Narodowego, Tatrzański Park Narodowy, Zakopane-Kraków.

  • [32] Majer, V., Krám, P. & Shanley, J.B. 2005. Rapid regional recovery from sulfate and nitrate pollution in streams of the western Czech Republic — comparison to other recovering areas. Environ. Poll. 135: 17–28. http://dx.doi.org/10.1016/j.envpol.2004.10.009 [CrossRef]

  • [33] Marchetto, A., Mosello, R., Psenner, R., Bendetta, G., Boggero, A., Tait, D. & Tartari G.A. 1995. Factors affecting water chemistry of alphine lakes. Aquat. Sci. 57: 81–89. http://dx.doi.org/10.1007/BF00878028 [CrossRef]

  • [34] Moldan, B. 1991. Atmospheric deposition: A biogeochemical process, Academia, Praha, 108 pp.

  • [35] Nalewajko, C., & Paul, B. 1985. Effects of manipulations of aluminum concentrations and pH on phosphate uptake and photosynthesis of planktonic communities in two Precambrian Schield lakes. Can. J. Fish. Aquat. Sci. 42: 1946–1953. [CrossRef]

  • [36] Nemčok, J., Bezák, V., Janák, M., Kahan, Š., Ryja, W., Kohút, M., Lehotský, I., Wieczorek, J., Zelman, J., Mello, J., Halouzka, R., Raczkowski, W. & Reichwalder, P. 1993. Vysvetlivky ku geologickej mape Tatier [Explanation of the Geological map of the Tatra Mountains]. Geologický ústav Dionýza Štúra, Bratislava, 135 pp.

  • [37] Pelíšek, J. 1973a. Vertical soil zonality in the Carpathians of Czechoslovakia. Geoderma 9: 193–211. http://dx.doi.org/10.1016/0016-7061(73)90058-X [CrossRef]

  • [38] Pelíšek, J. 1973b. Pôdne pomery Tatranského národného parku [Soil conditions of the Tatra National Park]. Zborník TANAP 15: 145–180.

  • [39] Procházková, L. 1959. Bestimmung der Nitrate im Wasser. Z. Anal. Chem. 167: 254–260. http://dx.doi.org/10.1007/BF00458786 [CrossRef]

  • [40] Procházková, L. 1960. Einfluss der Nitrate und Nitrite auf die Bestimmung des organischen Stickstoffs und Ammoniums im Wasser. Arch. Hydrobiol. 56: 179–185.

  • [41] Psenner, R. & Catalan, J. 1994. Chemical composition of lakes in crystaline basins: a combination of atmospheric deposition, geologic background, biological activity and human action, pp. 255–314. In: Margalef, R. (ed.) Limnology now: A paradigm of planetary problems, Elsevier Science, Amsterdam.

  • [42] Reuss, J.O., Cosby, B.J. & Wright, R.F. 1987. Chemical processes governing soil and water acidification. Nature 329: 27–32. http://dx.doi.org/10.1038/329027a0 [CrossRef]

  • [43] Schöpp, W., Posch, M., Mylona, S. & Johansson, M. 2003. Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrol. Earth Syst. Sci. 7: 436–446. [CrossRef]

  • [44] Stangenberg, M. 1938. Zur Hydrochemie der Tatraseen. Verh. Int. Verein. Limnol. 8: 211–220.

  • [45] Stuchlík, E., Kopáček, J., Fott, J. & Hořická, Z. 2006. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia, Bratislava 61,Suppl. 18: S11–S20. [CrossRef]

  • [46] Stuchlík, E., Stuchlíková, Z., Fott, J., Růžička, L. & Vrba, J. 1985. Vliv kyselých srážek na vody na území Tatranského národního parku [Effect of acid precipitation on waters of the TANAP territory]. Zborník TANAP 26: 173–211.

  • [47] Szaflarski, J. 1936. Morfometria jezior tatrzańskich; Cz. I. Jeziora Tatr Polskich [Morphology of the Tatra Mountain lakes; Part I. Lakes of the Polish Tatra Mountains]. Wiadomości Słužby Geograficznej, Warszawa 1: 1–37.

  • [48] Šporka, F., Livingstone, D.M., Stuchlík, E., Turek, J. & Galas, J. 2006. Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S77–S90.

  • [49] Veselý, J., Majer, V., Kopáček, J. & Norton S.A. 2003. Increasing temperature decreases aluminum concentrations in Central European lakes recovering from acidification. Limnol. Oceanogr. 48: 2346–2354. http://dx.doi.org/10.4319/lo.2003.48.6.2346 [CrossRef]

  • [50] Veselý, J., Majer, V. & Norton, S.A. 2002. Heterogeneous response of central European streams to decreased acidic atmospheric deposition. Environ. Poll. 120: 275–281. http://dx.doi.org/10.1016/S0269-7491(02)00150-1 [CrossRef]

  • [51] Vološčuk, I. (ed.) 1994. Tatranský národný park [Tatra National Park]. Gradus, Slovakia, 551 pp.

  • [52] Wetzel, R.G. 2001. Limnology. 3rd ed., Academic Press, New York, 1006 pp.

  • [53] Wright, R.F., Larssen, T., Camarero, L., Cosby, B.J., Ferrier, R.C., Helliwell, R., Forsius, M., Jenkins, A., Kopáček, J., Majer, V., Moldan, F., Posch, M., Rogora, M. & Schöpp, W. 2005. Recovery of acidified European surface waters. Environ. Sci. Technol. 39(3): 64A–72A. http://dx.doi.org/10.1021/es0531778 [CrossRef]

Comments (0)

Please log in or register to comment.