Jump to ContentJump to Main Navigation

Biologia

12 Issues per year


IMPACT FACTOR increased in 2014: 0.827

SCImago Journal Rank (SJR) 2014: 0.281
Source Normalized Impact per Paper (SNIP) 2014: 0.578
Impact per Publication (IPP) 2014: 0.766

VolumeIssuePage

Issues

Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane

1Key Laboratory for Tropical Biological Resources (MOE), Ocean College, Center for Experimental Biotechnology, Hainan University, Haikou, Hainan, 570228, People’s Republic of China

2Institute of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China

3Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China

© 2007 Institute of Molecular Biology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 62, Issue 4, Pages 386–393, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-007-0096-2, August 2007

Publication History

Published Online:
2007-08-01

Abstract

Six plasmids carrying a snowdrop lectin (Galanthus nivalis agglutinin, GNA) and one of three selection markers were successfully transferred into two sugarcane cultivars (FN81–745 and Badila) via Agrobacterium-mediated transformation. Agrobacterium strains LBA4404, EHA105 and A281 that harboured a super-binary vector were used for sugarcane transformation. The use of the hygromycin (Hyg) resistance gene (hpt II), phosphinothrincin (PPT) resistance gene (bar) or G418 resistance gene (npt II) as a screenable marker facilitated the initial selection of GNA transgenic sugarcane callus with different efficiencies and helped the rapid segregation of individual transformation events. All the three selective marker genes were controlled by CaMV 35S promoter, while GNA gene was controlled by promoter of RSs-1 (rice sucrose synthase-1) or Ubi (maize ubiquitin). Factors important to successful transformation mediated by Agrobacterium tumefaciens were optimized, which included concentration of A. tumefaciens, medium composition, co-cultivated methods with plant tissue, strain virulence and different selective marker genes. An efficient protocol for sugarcane transformation mediated by A. tumefaciens was established. The GNA gene has been integrated into sugarcane genome as demonstrated by PCR and Southern dot blotting detections. The preliminary results from bioassay demonstrated a significant resistance of the transgenic sugarcane plants to woolly aphid (Ceratovacuna lanigera Zehnther) indicating thus the possibility for obtaining a transgenic sugarcane cultivar with resistance to woolly aphid.

Keywords: snowdrop lectin gene; GNA; Agrobacterium tumefaciens; transformation; sugarcane; woolly aphid

  • [1] Arencibia A.D. & Carmona E.R. 2006. Sugarcane (Saccharum spp.). Methods Mol. Biol. 344: 227–235.

  • [2] Arencibia A.D., Carmona E.R., Pilar T., Chan M.T., Yu S.M., Luis E.T. & Pedro O. 1998. An efficient protocol for sugarcane (Saccharum spp. L) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7: 213–222. http://dx.doi.org/10.1023/A:1008845114531 [CrossRef]

  • [3] Belarmino M.M. & Mii M. 2000. Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep. 19: 435–442. http://dx.doi.org/10.1007/s002990050752 [CrossRef]

  • [4] Bell H.A., Fitches E.C., Marris G.C., Bell J., Edwards J.P., Gatehouse J.A. & Gatehouse A.M. 2001. Transgenic GNA expressing potato plants augment the beneficial biocontrol of Lacanobia oleracea (Lepidoptera; Noctuidae) by the parasitoid Eulophus pennicornis (Hymenoptera; Eulophidae). Transgenic Res. 10: 35–42. http://dx.doi.org/10.1023/A:1008923103515 [CrossRef]

  • [5] Bower R., Elliott A.R., Potier B.A.M, & Birch R.G. 1996. High-efficiency, microprojectile-mediated cotransformation of sugarcane-using visible or selectable markers. Molecular Breeding 2: 239–249. http://dx.doi.org/10.1007/BF00564201 [CrossRef]

  • [6] Chan M.T., Lee T.M. & Chang H.H. 1992. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33: 577–583.

  • [7] Down R.E., Ford L., Bedford S.J., Gatehouse L.N., Newell C., Gatehouse J.A. & Gatehouse A.M. 2001. Influence of plant development and environment on transgene expression in potato and consequences for insect resistance. Transgenic Res. 10: 223–236. http://dx.doi.org/10.1023/A:1016612912999 [CrossRef]

  • [8] Elliot A.R., Campbell J.A., Brettell R.I.S. & Grof C.P.L. 1998. Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust. J. Plant Physiol. 25: 739–743. http://dx.doi.org/10.1071/PP98066 [CrossRef]

  • [9] Fitches E., Gatehouse A.M.R. & Gatehouse J.A. 1997. Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of the tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. J. Insect Physiol. 43: 727–739. http://dx.doi.org/10.1016/S0022-1910(97)00042-5 [CrossRef]

  • [10] Foissac X., Loc N.T., Christou P., Gatehouse A.M.R. & Gatehouse J.A. 2000. Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J. Insect Physiol. 46: 573–583. http://dx.doi.org/10.1016/S0022-1910(99)00143-2 [CrossRef]

  • [11] Gatehouse A.M.R., Down R.E., Powell K.S., Sauvion N., Rahbe Y., Newell C.A., Merryweather A. & Gatehouse J.A. 1996. Effects of GNA expressing transgenic potato plants on peachpotato aphid, Myzus persicae. Entomol. Exp. Appl. 79: 295–307. http://dx.doi.org/10.1007/BF00186288 [CrossRef]

  • [12] Geoghegan I., Robertson W., Birch N. & Gatehouse A.M.R. 1995. Control of nematodes, particularly in plants. Patent, PN: WO 9526634; Cambridge, UK. 12.10.95.

  • [13] Hogervorst P.A., Ferry N., Gatehouse A.M., Wackers F.L. & Romeis J. 2006. Direct effects of snowdrop lectin (GNA) on larvae of three aphid predators and fate of GNA after ingestion. J. Insect Physiol. 52: 614–624. http://dx.doi.org/10.1016/j.jinsphys.2006.02.011 [CrossRef]

  • [14] Luo S.L., Chen R.K., Li R. & Fu C. 2002. Medium optimization of sugarcane tissue culture. Natural Sci. J. Hainan Univ. 20: 120–124.

  • [15] Luo S.L., Zhangsun D.T. & Tang K. 2005. Functional GNA expressed in Escherichia coli with high efficiency and its effect on Ceratovacuna lanigera Zehntner. Appl. Microbiol. Biotechnol. 69: 184–191. http://dx.doi.org/10.1007/s00253-005-0042-6 [CrossRef]

  • [16] Luo S.L., Zhou P., Zheng X.Q. & He P.C. 2000. Optimization of grape genomic DNA isolation and RAPD system. Natural Sci. J. Hainan Univ. 18: 383–387.

  • [17] Manickavasagam M., Ganapathi A., Anbazhagan V.R., Sudhakar B., Selvaraj N., Vasudevan A. & Kasthurirengan S. 2004. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep. 23: 134–143. http://dx.doi.org/10.1007/s00299-004-0794-y [CrossRef]

  • [18] Rao K., Rathore K., Hodges T.K., Fu X., Stoger E., Sudhakar D., Williams S., Christou P., Bharathi M., Bown D.P., Powell K.S., Spence J., Gatehouse A.M. & Gatehouse J.A. 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J. 15: 469–477. http://dx.doi.org/10.1046/j.1365-313X.1998.00226.x [CrossRef]

  • [19] Santosa D.A., Hendroko R., Farouk A. & Greiner R. 2004. A rapid and highly efficient method for transformation of sugarcane callus. Mol Biotechnol. 28: 113–119. http://dx.doi.org/10.1385/MB:28:2:113 [CrossRef]

  • [20] Schafer W., Gorz A. & Kahl G. 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529–531. http://dx.doi.org/10.1038/327529a0 [CrossRef]

  • [21] Setamou M., Bernal J.S., Legaspi J.C., Mirkov T.E. & Legaspi B.C.J. 2002. Evaluation of lectin-expressing transgenic sugarcane against stalkborers (Lepidoptera: Pyralidae): effects on life history parameters. J. Econ. Entomol. 95: 469–477. [CrossRef]

  • [22] Stachel S.E., Messens E., Van Montagu M. & Zambryski P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629. http://dx.doi.org/10.1038/318624a0 [CrossRef]

  • [23] Sudhakar D., Fu X., Stoger E., Williams S., Spence J., Brown D.P., Bharathi M., Gatehouse J.A. & Christou P. 1998. Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Res. 7: 371–378. http://dx.doi.org/10.1023/A:1008856703464 [CrossRef]

  • [24] Tang K. & Tinjuangjun P., Xu Y., Sun X.F., Gatehouse J.A., Ronald P.C., Qi H.X., Lu X.G., Christou P. & Kohli P. 1999. Particle bombardment mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208: 552–563. http://dx.doi.org/10.1007/s004250050593 [CrossRef]

  • [25] Tomov B.W. & Bernal J.S. 2003. Effects of GNA transgenic sugarcane on life history parameters of Parallorhogas pyralophagus (Marsh) (Hymenoptera: Braconidae), a parasitoid of Mexican rice borer. J. Econ. Entomol. 96: 570–576. [CrossRef]

  • [26] Wang Z., Zhang K., Sun X., Tang K. & Zhang J. 2005. Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants. J. Biosci. 30: 627–638. [CrossRef]

  • [27] Wei H., Wang M.L., Moore P.H. & Albert H.H. 2003. Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J. Plant Physiol. 160: 1241–1251. http://dx.doi.org/10.1078/0176-1617-01086 [CrossRef]

  • [28] Wu C.Y., Ye Z.B., Li H.X., Tang K.X. 2000. Genetic transformation of tomato with snowdrop lectin gene (GNA). Acta Botanica Sinica 42: 719–723.

  • [29] Zhang S.Z., Zheng X.Q., Lin J.F., Guo L.Q. & Zan L.M. 2000. Cloning of trehalose synthase gene and transformation into sugarcane. J. Agric. Biotechnol. 8: 385–388.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Subramanian Mayavan, Kondeti Subramanyam, Balusamy Jaganath, Dorairaj Sathish, Markandan Manickavasagam, and Andy Ganapathi
Plant Cell Reports, 2015
[2]
Shujie Dong, Paulo Delucca, R. Jason Geijskes, John Ke, Kristin Mayo, Pearl Mai, Manuel Sainz, Kerry Caffall, Tricia Moser, Michele Yarnall, Kristin Setliff, Rakesh Jain, Eric Rawls, Michele Smith-Jones, and Erik Dunder
Sugar Tech, 2014, Volume 16, Number 4, Page 366
[3]
Subramanian Mayavan, Kondeti Subramanyam, Muthukrishnan Arun, Manoharan Rajesh, Gnanajothi Kapil Dev, Ganeshan Sivanandhan, Balusamy Jaganath, Markandan Manickavasagam, Natesan Selvaraj, and Andy Ganapathi
Plant Cell Reports, 2013, Volume 32, Number 10, Page 1557
[4]
Maria N. Somleva, Oliver P. Peoples, and Kristi D. Snell
Plant Biotechnology Journal, 2013, Volume 11, Number 2, Page 233
[6]
Yan-Lin Sun and Soon-Kwan Hong
Plant Molecular Biology Reporter, 2012, Volume 30, Number 5, Page 1253
[7]
P. Suprasanna, V. Y. Patade, N. S. Desai, R. M. Devarumath, P. G. Kawar, M. C. Pagariya, A. Ganapathi, M. Manickavasagam, and K. H. Babu
Sugar Tech, 2011, Volume 13, Number 4, Page 322
[8]
Satbir S. Gosal, Shabir H. Wani, and Manjit S. Kang
Journal of Crop Improvement, 2010, Volume 24, Number 2, Page 153
[9]
Zhuan-di WU, Xin-long LIU, Li YAO, Huo-sheng SU, Min ZHANG, and Cai-wen WU
JOURNAL OF HUNAN AGRICULTURAL UNIVERSITY, 2011, Volume 37, Number 2, Page 150
[10]
J. Srikanth, N. Subramonian, and M. N. Premachandran
Tropical Plant Biology, 2011, Volume 4, Number 1, Page 52
[11]
Priya Joyce, Melissa Kuwahata, Nicole Turner, and Prakash Lakshmanan
Plant Cell Reports, 2010, Volume 29, Number 2, Page 173

Comments (0)

Please log in or register to comment.