Jump to ContentJump to Main Navigation


12 Issues per year

IMPACT FACTOR increased in 2013: 0.696
5-year IMPACT FACTOR: 0.751

SCImago Journal Rank (SJR): 0.306
Source Normalized Impact per Paper (SNIP): 0.555



Contrast adaptation to time constraints on development of two pre-dispersal predators of dandelion (Taraxacum officinale) seed

1Research Institute of Crop Production

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 63, Issue 3, Pages 418–426, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-008-0055-6, May 2008

Publication History

Published Online:


Pre-dispersal seed predators of quickly maturing inflorescences of Asteraceae are constrained by shortage of development time. At seed dispersal, they should pupate or, if still immature, relocate into another inflorescence. To investigate how dominant coleopteran predators of dandelion seed, Glocianus punctiger (Curculionidae) and Olibrus bicolor (Phalacridae), cope with time limitation we combined observation (development and temperature of dandelion capitulum, thermal constants of predator development, age structure of larval populations at seed dispersal) and analogy (“rate isomorphy” in predator development, comparing “model” coleopteran species with similar temperature requirements). Development of a dandelion capitulum takes 21 days. The time available to G. punctiger (140–190 day degrees, development threshold 6.3°C) is sufficient to complete development and pupate after seed dispersal. By contrast, only 30–50 day degrees are available to O. bicolor (threshold 13.5°C) and this is not enough to complete development and consequently immature larvae should move to other capitula to continue feeding until pupation. These contrast strategies which are determined by this thermal adaptation, are accompanied by differences in larval morphology. The “cold adapted” G. punctiger has an apodous larva not capable of migrating between capitula while the “warm adapted” O. bicolor has a mobile campodeiform larva capable of migration.

Keywords: Curculionidae; Phalacridae; Coleoptera; lower development threshold; temperature; larva; morphology

  • [1] Adachi I. 1994. Development and life cycle of Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae) on citrus trees under fluctuating and constant temperature regimes. Appl. Entomol. Zool. 29: 485–497.

  • [2] Ali A.W., Wetzel T. & Heyer W. 1977. Ergebnisse von Untersuchungen über die Effektivtemperatursummen einzelner Entwicklungsstadien der Getreidehähnchen (Lema spp.). Arch. Phytophathol. Pfl-Schutz 13: 425–433. [CrossRef]

  • [3] Bacheler J.S., Jones J.W., Bradley J.R. & Bowen H.D. 1975. The effect of temperature on development and mortality of boll weevil immature stages. Environ. Entomol. 4: 808–811. [CrossRef]

  • [4] BenAzouri A. 1990. Contribution á l’etude du cycle biologique de Phloetribus scarabeoides (Bern) (Col. Scolytidae) dans la region de Taroudant (Maroc). Al Awamia 73: 87–101.

  • [5] Butler G.D. & Ritchie P.L. 1967. The life cycle of Hypera brunneipennis and a parasite, Bathyplectes curculionis, in relation to temperature. J. Econ. Entomol. 60: 1239–1241. [CrossRef]

  • [6] Campagna G. & Rapparini G. 2002. Sviluppo di mezzi biologici per il contenimiento delle malerbe. Informatore Agrario 58: 53–58.

  • [7] Chan W.P., Ellsbury M.M. & Baker G.T. 1990. Effects of temperature on preimaginal development of Hypera meles (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 83: 1116–1124. [CrossRef]

  • [8] Crawley M.J. 1997. Plant-Herbivore Dynamics, pp. 401–474. In: Crawley, M.J. (ed.), Plant Ecology, 2nd ed., Blackwell, Oxford.

  • [9] DeLoach C.J. & Cordo H.A. 1976. Life cycle and biology of Neochetina brucki, a weevil attacking waterhyacinth in Argentina, with notes on N. eichhorniae. Ann. Entomol. Soc. Am. 69: 643–652. [CrossRef]

  • [10] Dixon A.F.G., Jarošík V. & Honěk A. 2005. Thermal requirements for development and resource partitioning in aphidophagous guilds. Eur. J. Entomol. 102: 407–411. [CrossRef]

  • [11] Fan Y., Groden E. & Drummond F.A. 1992. Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinellidae) under constant and variable temeratures. J. Econ. Entomol. 85: 1762–1770. [CrossRef]

  • [12] Fenner M., Cresswell J.E. & Hurley R.A. 2002. Relationship between capitulum size and pre-dispersal seed predation by insect larvae in common Asteraceae. Oecologia 130: 72–77. [CrossRef]

  • [13] Ferro D.N., Logan J.A., Voss R.H. & Elkinton J.S. 1985. Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environ. Entomol. 14: 343–348. [CrossRef]

  • [14] Fornasari L. 1995. Temperature effects on the embryonic development Aphtona abdominalis (Coleoptera: Chrysomelidae), a natural enemy of Euphorbia escula (Euphorbiales: Euphorbiaceae). Environ. Entomol. 24: 720–723. [CrossRef]

  • [15] Guppy J.C. & Harcourt G.G. 1978. Effects of temperature on development of the immature stages of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae). Can. Entomol. 110: 257–263. [CrossRef]

  • [16] Guppy J.C. & Mukerji M.K. 1974. Effects of temperature on developmental rate of the immature stages of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Can. Entomol. 106: 93–100. [CrossRef]

  • [17] Honěk A. 1996. The relationship between thermal constants for insect development: a verification. Acta Soc. Zool. Bohem. 60: 115–152.

  • [18] Honěk A. 1999. Constraints on thermal requirements for insect development. Entomol. Sci. 2: 615–621.

  • [19] Honěk A., Jarošik V., Martinková Z. & Novák I. 2002. Food induced variation in thermal constants of development and growth of Autographa gamma (Lepidoptera: Noctuidae) larvae. Eur. J. Entomol. 99: 241–252. [CrossRef]

  • [20] Honěk A. & Kocourek F. 1988. Thermal requirements for development of aphidophagous Coccinellidae (Coleoptera), Chrysopidae (Neuroptera), and Syrphidae (Diptera): some general trends. Oecologia 76: 455–460. [CrossRef]

  • [21] Honěk A. & Kocourek F. 1990. Temperature and development time in insects: a general relationship between thermal constants. Zool. Jb. Syst. 117: 401–439.

  • [22] Honěk A. & Martinková Z. 2005. Pre-dispersal predation of Taraxacum officinale (dandelion) seed. J. Ecol. 93: 335–344. http://dx.doi.org/10.1111/j.1365-2745.2005.00986.x [CrossRef]

  • [23] Honěk A., Martinková Z., Hůrka K. & Štys P. 2005. Insect community in maturing capitula of dandelion (Taraxacum officinale). Biologia 60: 559–565.

  • [24] Hsieh F., Roberts S.J. & Ambrus E.J. 1974. Developmental rate and population of alfalfa weevil larvae. Environ. Entomol. 3: 593–597. [CrossRef]

  • [25] Hurpin B. 1956. Influence de la temperature et de l’humidité de sol sur le developpement embryonaire du Hanneton commun (Melolontha melolontha L.). Rev. Pathol. Veg. Entomol. Agric. Fr. 35: 75–92.

  • [26] Hurpin B. 1962. Superfamille des Scarabeoidea, pp. 24–204. In: Balachowsky A.S. (ed.), Entomologie Appliquée a l’Agriculture, Tome 1, Coleoptéres. Mason et Cie, Paris.

  • [27] Jackson C.G. & Elliott N.C. 1988. Temperature-dependent development of immature stages of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Entomol. 17: 166–171. [CrossRef]

  • [28] James D.G. & Voegele B. 2000. Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.) (Coleoptera: Nitidulidae) over a range of constant temperatures. Aust. J. Entomol. 39: 180–184. http://dx.doi.org/10.1046/j.1440-6055.2000.00163.x [CrossRef]

  • [29] Jarošik V., Honěk A. & Dixon A.F.G. 2002. Developmental rate isomorphy in insects and mites. Am. Nat. 160: 497–510. http://dx.doi.org/10.1086/342077 [CrossRef]

  • [30] Julien M.H. & Bourne A.S. 1983. Temperature relations of Perapion antiquum (Col., Curculionidae), a weevil introduced to control the weed Emex australis in Australia. Z. Angew. Entomol. 95: 351–360.

  • [31] King J.E., Price R.G., Young J.H., Willson L.J. & Pinkston K.N. 1985. Influence of temperature on development and survival of the immature stages of the elm leaf beetle, Pyrrhalta luteola (Muller) (Coleoptera: Chrysomelidae). Environ. Entomol. 14: 272–274. [CrossRef]

  • [32] Kirschner J., Štěpánek J. & Trávníček B. 2002. Taraxacum Wigg. — pampeliška (smetánka), pp. 686–702. In: Kubat K. (ed.), Klíč ke květeně České republiky [Key to the Flora of the Czech Republic], Academia, Praha.

  • [33] Kwong S. 1980. A rearing method for Sitona humeralis Stephens (Coleoptera: Curculionidae), and its development under controlled conditions. Bull. Entomol. Res. 70: 97–102.

  • [34] Lactin D.J. & Holliday N.J. 1992. Constant-temperature development rates of pre-imaginal Colorado potato beetles (Leptinotarsa decemlineata (Say), Coleoptera: Chrysomelidae) from Manitoba and British Columbia. Proc. Entomol. Soc. Manitoba 48: 1–13.

  • [35] Litsinger J.A. & Apple J.W. 1973. Thermal requirements for embryonic and larval development of the alfalfa weevil in Wisconsin. J. Econ. Entomol. 66: 309–311. [CrossRef]

  • [36] Logan J.A., Casagrande R.A., Faubert H.H. & Drummond F.A. 1985. Temperature-dependent development and feeding of immature Colorado potato beetle Lepinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Environ. Entomol. 14: 275–284. [CrossRef]

  • [37] Loi G. & Belcari A. 1983. Influenza della temperatura sullo sviluppo degli stadi preimaginali del coleottero crisomelide Chrysomela populi L. Frustula Entomol. N. S. 6: 87–101.

  • [38] Madubunyi L.C. & Koehler C.S. 1974. Effects of photoperiod and temperature development in Hypera brunneipennis. Environ. Entomol. 3: 1017–1021. [CrossRef]

  • [39] Martel P., Svec H.J. & Harris C.R. 1976. The life history of the carrot weevil, Listronotus oregonensis (Coleoptera, Curculionidae) under controlled conditions. Can. Entomol. 108: 931–934. [CrossRef]

  • [40] McAvoy T.J. & Kok L.T. 1985. Viability and developmental rate of everwintering eggs of Trichosirocalus horridus (Coleoptera: Curculionidae). Environ. Entomol. 14: 285–288.

  • [41] McAvoy T.J., Kok L.T. & Trumble J.T. 1983. Biological studies of Ceutorhynchus punctiger (Coleoptera: Curculionidae) on dandelion in Virginia. Ann. Entomol. Soc. Am. 76: 671–674. [CrossRef]

  • [42] Mellors W.K. & Allegro A. 1984. Comparison of constant and alternating temperatures for determining developmental rates of Mexican bean beetle eggs and pupae. Ann. Entomol. Soc. Am. 77: 6–10. [CrossRef]

  • [43] Mullen M.A. 1981. Sweetpotato weevil, Cylas formicarius elongatulus (Summers): development, fecundity, and longevity. Ann. Entomol. Soc. Am. 74: 478–481. [CrossRef]

  • [44] Nteletsana L., Schoeman A.S. & McGeoch M.A. 2001. Temperature effects on development of the sweetpotato weevil, Cylas puncticollis Boehman (Coleoptera: Apionidae). African Entomol. 9: 49–57.

  • [45] Perdikis D.C., Fantinou A.A. & Lykouressis D.P. 2003. Constant rate allocation in nymphal development in species of Hemiptera. Physiol. Entomol. 28: 331–339. http://dx.doi.org/10.1111/j.1365-3032.2003.00356.x [CrossRef]

  • [46] Radde G. 1974. Beobachtungen zur Entwicklung von Rüselkäfern (1). Entomol. Nachr. 18: 44–47.

  • [47] Reitter E. 1912. Fauna Germanica. Vol. 3. KG Lutz Verlag, Stuttgart, 465 pp.

  • [48] Satomura H. 1950. Relations of temperature to the development of the larval and pupal stages of Phyllotreta vittata. Oyo Kontyu 6: 1–9.

  • [49] Schaafsma A.W., Whitfield G.H. & Ellis C.R. 1991. A temperature-dependent model of egg development of the western corn rootworn, Diabrotica virgifera LeConte (Coleoptera: Chrysomelidae). Can. Entomol. 123: 1183–1197. http://dx.doi.org/10.4039/Ent1231183-6 [CrossRef]

  • [50] Schroder R.F.W. & Steinhauer A.L. 1976. Effect of photoperiod and temperature regimens of the biologz of European and United States alfalfa weevil populations. Ann. Entomol. Soc. Am. 69: 701–706. [CrossRef]

  • [51] Sherrod D.W., White C.E. & Eastman C.E. 1982. Temperature-related development of the imported crucifer weevil, Baris lepidii (Coleoptera: Curculionidae), in the laboratory and field. Environ. Entomol. 11: 897–900. [CrossRef]

  • [52] Simonet D.E. & Devenport B.L. 1981. Temperature requirements for development and oviposition of the carrot weevil. Ann. Entomol. Soc. Am. 74: 312–315. [CrossRef]

  • [53] Smith L. & Kok L.T. 1985. Influence of temperature on the development and mortality of immature Rhinocyllus conicus (Coleoptera: Curculionidae). Environ. Entomol. 14: 629–633. [CrossRef]

  • [54] Stenseth C. 1979. Effects of temperature on development of Otiorrhynchus sulcatus (Coleoptera: Curculionidae). Ann. Appl. Biol. 91: 179–185. http://dx.doi.org/10.1111/j.1744-7348.1979.tb06488.x [CrossRef]

  • [55] Stewart-Wade S.M., Neumann S., Collins L.L. & Boland G.J. 2002. The biology of Canadian wees. 117. Taraxacum officinale G.H. Weber ex Wiggers. Can. J. Plant Sci. 82: 825–853.

  • [56] Sue K., Ferro D.N. & Emberson R.M. 1980. A rearing method for Sitona humeralis Stephens (Coleoptera: Curculionidae) and its development under controlled conditions. Bull. Entomol. Res. 70: 97–102. http://dx.doi.org/10.1017/S0007485300009809 [CrossRef]

  • [57] Tarrant C.A. & McCoy C.W. 1989. Effect of temperature and relative humidity on the egg and larval stages of some citrus root weevils. Florida Entomol. 72: 117–123. http://dx.doi.org/10.2307/3494976 [CrossRef]

  • [58] Tauber C.A., Tauber M.J., Gollands B., Wright R.J. & Obrycki J. 1988. Preimaginal development and reproductive responses to temperature in two populations of the colorado potato beetle (Coleptera: Chrysomalidae). Ann. Entomol. Soc. Am. 81: 755–763. [CrossRef]

  • [59] Taylor R.G. & Harcourt D.G. 1978. Effect of temperature on developmental rate of the immature stages of Crioceris asparagi (Coleoptera: Chrysomelidae). Can. Entomol. 110: 57–62. http://dx.doi.org/10.4039/Ent11057-1 [CrossRef]

  • [60] Trudgill D.L. 1995. Why do tropical poikilothermic organisms tend to have higher threshold temperature for development than temperature ones. Funct. Ecol. 9: 136–137.

  • [61] Trudgill D.L., Honek A., Li D. & Van Straalen N.M. 2005. Thermal time — concepts and utility. Ann. Appl. Biol. 146: 1–14. http://dx.doi.org/10.1111/j.1744-7348.2005.04088.x [CrossRef]

  • [62] Tweney J. & Mogie M. 1999. The relationship between achene weight, embryo weight and germination in Taraxacum apomicts. Ann. Bot. 83: 45–50. http://dx.doi.org/10.1006/anbo.1998.0790 [CrossRef]

  • [63] Uscidda C. & Crovetti A. 1983. Influenza della temperatura sullo sviluppo degli studi preimaginali di Galeruca sardoa (Gene) (Coleoptera Chrysomelidae). Frustula Entomol. N. S. 6: 45–68.

  • [64] Walgenbach J.F. & Wyman J.A. 1984. Colorado potato beetle (Coleoptera: Chrysomalidae) development in relation to temperature in Wisconsin. Ann. Entomol. Soc. Am. 77: 604–609. [CrossRef]

  • [65] Ward R.H. & Pienkowiski R.L. 1978. Biology of Cassida rubiginosa, a thirtle-feeding shield beetle. Ann. Entomol. Soc. Am. 71: 585–591. [CrossRef]

  • [66] Wightman J.A. 1973. Effect of environment on Costelytra zealandica (Coloptera: Scarabaeidae). 2. Effect of temperature and soil moisture on duration and survival of the egg stage. N. Z. J. Sci. 16: 41–52.

  • [67] Woodson W.D. & Edelson J.V. 1988. Developmental rate as a function of temperature in a carrot weevil, Listronotus texanus (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 81: 252–254. [CrossRef]

  • [68] Woodson W.D. & Jackson J.J. 1996. Developmental rate as a function of temperature in northern corn rootworm (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 89: 226–230. [CrossRef]

  • [69] Woodson W.D., Jackson J.J. & Ellsbury M.M. 1996. Northern corn rootworm (Coleoptera: Chrysomelidae) temperature requirements for egg development. Ann. Entomol. Soc. Am. 89: 898–903. [CrossRef]

Comments (0)

Please log in or register to comment.