Jump to ContentJump to Main Navigation

Biologia

12 Issues per year


IMPACT FACTOR increased in 2013: 0.696
5-year IMPACT FACTOR: 0.751

SCImago Journal Rank (SJR): 0.306
Source Normalized Impact per Paper (SNIP): 0.555

VolumeIssuePage

Issues

Effects of temperature on hatching rate, embryonic development and early larval survival of the edible sea urchin, Tripneustes gratilla

1University of the Ryukyus

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 64, Issue 4, Pages 768–775, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-009-0135-2, July 2009

Publication History

Published Online:
2009-07-17

Abstract

The temperature tolerances of embryonic and early larval development stages of Tripneustes gratilla were investigated from 13-34°C under laboratory conditions. Zygotes showed unequal cleavage at 13°C, whereas cleavage did not occurred at 34°C. Hatching was observed between 16–31°C with maximum hatching rates observed at 22–29°C. The lower and higher temperature limits for embryonic development were approximately 22°C and 29°C, respectively. Outside of this temperature range, embryos showed abnormality at different incubation times. Early larvae of this species have the ability to survive the higher temperature limit for short periods of time. Prism and 2 arm pluteus larvae survived at temperatures between 30 and 33°C, whereas 4 arm pluteus larvae survived at temperatures between 30 and 36°C for 2 h. These results suggest that the larval temperature tolerance capability of T. gratilla is stage dependent. These findings are important for understanding the life history strategy of this sea urchin in the shallow open water environment.

Keywords: Tripneustes gratilla; sea urchin; embryo; larvae; temperature

  • [1] Balch T. & Scheibling R.E. 2001. Larval supply, settlement and recruitment in echinoderms, pp. 1–83. In: Lawrence J.M. & Jangoux M. (eds), Echinoderm Studies, Vol. 6., A.A. Balkema Publishers, Rotterdam.

  • [2] Bosch I., Beauchamp K.A., Steele M.E. & Pearse J.S. 1987. Development, metamorphosis, and seasonal abundance of embryo and larvae of the antarctic sea urchin Strechinus neumayeri. Biol. Bull. (Woods Hole) 173: 126–135. http://dx.doi.org/10.2307/1541867 [CrossRef]

  • [3] Bougis P. 1971. Effet de la temperature sur le development endotrophe des pluteus, pp. 197–202. In: Crisp D.J. (ed.), Fourth European Marine Biology Symposium, Cambridge University Press.

  • [4] Chen C-P. & Chang K-H. 1981. Reproductive periodicity of the sea urchins, Tripneustes gratilla (L.) in Taiwan compared with other regions. Int. J. Invertebr. Reprod. 3: 309–319.

  • [5] Fouda M.M. & Hellal A.M. 1990. Reproductive biology of Tripneustes gratilla (L.) from Gulf of Aqaba and northern Red Sea, pp. 77–82. In: De Ridder C., Lahaye M. & Jangoux M. (eds), Echinoderm Research, Balkema, Rotterdam.

  • [6] Fujisawa H. 1989. Differences in temperature dependence of early development of sea urchins with different growing seasons. Biol. Bull. (Woods Hole) 176: 96–102. http://dx.doi.org/10.2307/1541576 [CrossRef]

  • [7] Fujisawa H. 1993. Temperature sensitivity of a hybrid between two species of sea urchin differing in thermotolerance. Develop. Growth & Differ. 35: 395–401. http://dx.doi.org/10.1111/j.1440-169X.1993.00395.x [CrossRef]

  • [8] Fujisawa H. & Shigei M. 1990. Correlation of embryonic temperature sensitivity of sea urchins with spawning season. J. Exp. Mar. Biol. Ecol. 136: 123–139. DOI 10.1016/0022-0981(90)90191-E http://dx.doi.org/10.1016/0022-0981(90)90191-E [CrossRef]

  • [9] Ishida J. 1936. An enzyme dissolving the fertilization membrane of sea-urchin eggs. Annot. Zool. Jpn. 4: 453–457.

  • [10] Keesing J.K. & Hall K.C. 1998. Review of harvest and status of world sea urchin fisheries point to opportunities for aquaculture. J. Shellfish Res. 17: 1505–1506.

  • [11] Kidron J., Fishelson L. & Moav B. 1972. Cytology of an unusual case of hermaphroditic gonads in the tropical sea urchin Tripneustes gratilla from Eilat (Red sea). Mar. Biol. (Berl.) 14: 260–263. DOI 10.1007/BF00348289 [CrossRef]

  • [12] Kobayoshi N. 1969. Spawning periodicity of sea urchins in Setto. III. Tripneustes gratilla, Echinometra mathaei, Anthocidaris crassipina and Echinostrephus aciculatus. Sci. Eng. Rev. Doshisha Uni. 9: 254–269.

  • [13] Lawrence J.M. 1973. Temperature tolerances of tropical shallow-water echinoids (Echinodermata) at Elat (Red sea). Isr. J. Zool. 22: 143–150.

  • [14] Lawrence J.M. & Agatsuma Y. 2007. Ecology of Tripneustes, pp. 499–520. In: Lawrence J.M. (ed.), Edible Sea Urchin: Biology and Ecology, Elsevier, Amsterdam.

  • [15] Lopez S., Turon X., Montero E., Palacin C., Duarte C.M. & Tarjuelo I. 1998. Larval abundance, recruitment and early mortality in Paracentrotus lividis (Echinoidea). Interannual variability and plankton-benthos coupling. Mar. Ecol. Prog. Ser. 172: 239–251. http://dx.doi.org/10.3354/meps172239 [CrossRef]

  • [16] Maharavo J. 1993. Etude de l’oursin comestible Tripneustes gratilla (L. 1758) dans la région de nosy -Bé (côte nord-ouest de Madagascar) Densité morphometrie, nutrition, croissance, processus réproducteurs, impact de l’exploitation sur les populations. Thesis. Doc. En. Sci., Université de Aix-Marseille III, Marseille.

  • [17] Matsumoto Y., Kominami T. & Ishikawa M. 1988. Timers in early development of sea urchin embryos. Develop. Growth & Differ. 30: 543–552. http://dx.doi.org/10.1111/j.1440-169X.1988.00543.x [CrossRef]

  • [18] McEdward L.R. 1985. Effects of temperature on the body form, growth, electron transport system activity, and development rate of an echinopluteus. J. Exp. Mar. Biol. Ecol. 93: 169–181. DOI 10.1016/0022-0981(85)90157-1 http://dx.doi.org/10.1016/0022-0981(85)90157-1 [CrossRef]

  • [19] Mita M., Hino A. & Yasumasu I. 1984. Effect of temperature on interaction between eggs and spermatozoa of sea urchin. Biol. Bull. (Woods Hole) 166: 68–77. http://dx.doi.org/10.2307/1541431 [CrossRef]

  • [20] Mortensen T. 1943. A Monograph of the Echinoidea. 11.2. Camarodonta. I. CA Reitzel, Copenhagen, 505 pp.

  • [21] Muthiga N.A. 2005. Testing for the effects of seasonal and lunar periodicity on the reproduction of the edible sea urchin Tripneustes gratilla (L.) in Kenyan coral reef lagoons. Hydrobiologia 549: 57–64. DOI 10.1007/s10750-005-4757-2 http://dx.doi.org/10.1007/s10750-005-4757-2 [CrossRef]

  • [22] Ohshima H. 1949. Echinoidea, pp. 576–596. In: Uchida S. (ed.), Illustrated Encyclopedia of the Fauna of Japan, Hokuryukan, Tokyo. [In Japanese]

  • [23] Onoda K. 1936. Notes on the development of some Japanese echinoids with special reference to the structure of the larval body. Jap. J. Zool. 6: 635–654.

  • [24] Pearse J.R. 1974. Reproductive patterns of tropical reef animals: three species of sea urchins, pp. 235–240. In: Proc. 2nd Int. Coral Reef Symp, Australia.

  • [25] Pedrotti M.L. 1993. Spatial and temporal distribution and recruitment of echinoderm larvae in the Ligurian Sea. J. Mar. Biol. Ass. U.K. 73: 513–530. http://dx.doi.org/10.1017/S0025315400033075 [CrossRef]

  • [26] Rahman S., Rahman M. & Uehara T. 2007. Effects of temperature on early development of the sea urchin Echinometra mathaei from the intertidal reef of Okinawa island, Japan. Galaxea JCRS 9: 35–48. http://dx.doi.org/10.3755/jcrs.9.35 [CrossRef]

  • [27] Rupp J.H. 1973. Effect of temperature on fertilization and early cleavage of some tropical echinoderms, with emphasis of Echinometra mathaei. Mar. Biol. (Berl.) 23: 183–189. DOI10.1007/BF00389483 http://dx.doi.org/10.1007/BF00389483 [CrossRef]

  • [28] Sewell M.A. & Young C.M. 1999. Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. J. Exp. Mar.Biol.Ecol. 236: 291–305. DOI10.1016/S0022-0981(98)00210-X http://dx.doi.org/10.1016/S0022-0981(98)00210-X [CrossRef]

  • [29] Shigei M. 1974. Echinoidea, pp. 208–232. In: Uchida T. (ed.), Systematic Zoology 8(2) — Echinoderms, Nakayama Book Co., Tokyo. [In Japanese]

  • [30] Shigei M. 1987. A study of the echinoid fauna of Okinawa Island. Galaxea 6: 109–113.

  • [31] Shokita S. 1998. Aquaculture of miscellaneous organisms, pp. 313–327. In: Shokita M., Kakazu K., Tomori A. & Tomori T. (eds), Yamaguchi M. et al. (English ed.), Aquaculture in Tropical Areas, Midori Shobo co. ltd. Ikebukuro, Toshima-ku, Tokyo, Japan.

  • [32] Sloan N.A. 1984. Echinoderm fisheries of the world: A review, pp. 109–124. In: Keegan B.F. & O’Connor B.D.S. (eds), Echinodermata, AA Balkema Publishers, Rotterdam.

  • [33] Stephens R.E. 1972a. Studies on the development of the sea urchin Strongyrocentrotus droebachinensis I. Ecology and normal development. Biol. Bull. (Woods Hole) 142: 132–144. http://dx.doi.org/10.2307/1540251 [CrossRef]

  • [34] Stephens R.E. 1972b. Studies on the development of the sea urchin Strongyrocentrotus droebachinensis II. Regulation of mitotic spindle equilibrium by the environmental temperature. Biol. Bull. (Woods Hole) 142: 145–159. http://dx.doi.org/10.2307/1540252 [CrossRef]

  • [35] Stephenson A. 1934. The breeding of reef animals. Part II. Invertebrates other than corals. Great Barrier Reef Expeditions 1928–29, Sci. Rep. 3: 247–272.

  • [36] Tuason A.Y. & Gomez E.D. 1979. The reproductive biology of Tripneustes gratilla (Linnaeus) (Echinoidea: Echinodermata) with some notes on Diadema setosum Leske. Proc. Int. Symp. Mar. Biogeogr. Evol. Southern Hemisphere 2: 707–716.

  • [37] Utinomi H. 1965. Echinoidea, pp. 113–119. In: Coloured illustrations of sea shore animals of Japan. Hoikusha, Osaka. [In Japanese]

  • [38] Vaïtilingon D., Rasolofonirina R. & Jangoux M. 2005. Reproductive cycle of edible Echinoderms from the Southwestern Indian ocean 1. Tripneustes gratilla L. (Echinoidea, Echinodermatata). Western Indian Ocean J. Mar. Sci. 4: 47–60.

  • [39] Yaroslavtseva L.M., Sergeeva E.P. & Zotin A.I. 1992. Determination of optimum temperature and salinity for cleavage of sea urchin eggs. Russ. J. Mar. Biol. 18: 122–128.

Comments (0)

Please log in or register to comment.