Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3 : Biologia

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Biologia


IMPACT FACTOR increased in 2014: 0.827

SCImago Journal Rank (SJR) 2014: 0.281
Source Normalized Impact per Paper (SNIP) 2014: 0.578
Impact per Publication (IPP) 2014: 0.766

VolumeIssuePage

Issues

Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3

1Biochemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia

2School of Pharmacy, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia

3Centre for Life Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 64, Issue 6, Pages 1047–1052, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-009-0190-8, October 2009

Publication History

Published Online:
2009-10-22

Abstract

An Indonesian marine bacterial isolate, which belongs to genus of Bacillus sp. based on 16S rDNA analysis and was identified as Bacillus filicolonicus according to its morphology and physiology, produced a raw starch degrading α-amylase. The partially purified α-amylase using a maize starch affinity method exhibited an optimum pH and temperature of 6.0 and 60°C, respectively. The enzyme retained 72% of its activity in the presence of 1.5 M NaCl. Scanning electron micrographs showed that the α-amylase was capable of degrading starch granules of rice and maize. This α-amylase from Bacillus sp. ALSHL3 was classified as a saccharifying enzyme since its major final degradation product was glucose, maltose, and maltotriose.

Keywords: α-amylase; Bacillus filicolonicus; raw starch; maize; marine

  • [1] Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811–822. http://dx.doi.org/10.1016/j.jmb.2003.10.078

  • [2] Asgher M., Asad M.J., Rahman S.U. & Legge R.L. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950–955. http://dx.doi.org/10.1016/j.jfoodeng.2005.12.053 [Web of Science] [CrossRef]

  • [3] Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3 [CrossRef]

  • [4] Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Muray R.G.E., Niven C.F., Ravin A.W. & Stanier R.W. 1974. Bergey’s Manual of Determinative Bacteriology, 8th Edition. The Williams and Wilkins Company, Baltimore.

  • [5] Cho H.Y., Kim Y.W., Kim T.J., Lee H.S., Kim D.Y., Kim J.W., Lee Y.W., Lee S.B. & Park K.H. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta. 1478: 333–340.

  • [6] Demirkan E.S., Mikami B., Adachi M., Higasa T., Utsumi S. 2005. α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem. 40: 2629–2636. http://dx.doi.org/10.1016/j.procbio.2004.08.015 [CrossRef]

  • [7] Fuwa H. 1954. A new method for microdetermination of amylase activity by the use of amylose as a substrate. J. Biochem. 21: 219–230.

  • [8] Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616. http://dx.doi.org/10.1016/S0032-9592(03)00053-0 [CrossRef]

  • [9] Hamilton L.M., Kelly C.T. & Fogarty W.M. 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial α-amylase of Bacillus sp. IMD 434. Carbohydr. Res. 314: 251–257. http://dx.doi.org/10.1016/S0008-6215(98)00300-0 [CrossRef]

  • [10] Hayashida S., Teramoto Y. & Inoue T. 1988. Production and characteristics of raw potato starch digesting amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 54: 1516–1522.

  • [11] Ivanova V., Dobreva E. & Emanuilova E. 1993. Purification and characterization of thermostable α-amylase from Bacillus licheniformis. J. Biotechnol. 28: 277–289. http://dx.doi.org/10.1016/0168-1656(93)90176-N [CrossRef]

  • [12] Janecek S. & Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125. http://dx.doi.org/10.1016/S0014-5793(99)00919-9 [CrossRef]

  • [13] Kiran K.K. & Chandra T. S. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant α-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023–1031. http://dx.doi.org/10.1007/s00253-007-1250-z [Web of Science] [CrossRef]

  • [14] Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature227: 680–68 http://dx.doi.org/10.1038/227680a0 [CrossRef]

  • [15] Lo H.F., Lin L.L., Chiang W.Y., Chie M.C., Hsu W.H. & Chang C.T. 2002. Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch. Microbiol. 178: 115–123. http://dx.doi.org/10.1007/s00203-002-0431-5 [CrossRef]

  • [16] MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20.

  • [17] Machovic M. & Janecek S. 2006. The evolution of putative starch binding domains. FEBS Lett. 580: 6349–6356. http://dx.doi.org/10.1016/j.febslet.2006.10.041 [CrossRef]

  • [18] Malhotra R., Noorvez S.M. & Satyanarayana T. 2000. Production and partial characterization of thermostable and calcium independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378–384. http://dx.doi.org/10.1046/j.1472-765x.2000.00830.x [CrossRef]

  • [19] Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426 428.

  • [20] Mohapatra B.R., Banerjee U.C. & Bapuji M. 1998. Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol. 60: 113–117. http://dx.doi.org/10.1016/S0168-1656(97)00197-1 [CrossRef]

  • [21] Najafi M.F., Deobagkar D. & Deobagkar D. 2005. Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr. Purif. 41: 349–354. http://dx.doi.org/10.1016/j.pep.2005.02.015 [CrossRef]

  • [22] Najafi M.F. & Kembhavi A. 2005. One step purification and characterization of an extracellular amylase from marine Vibrio sp. Enzyme Microb. Technol. 36: 535–539. http://dx.doi.org/10.1016/j.enzmictec.2004.11.014 [CrossRef]

  • [23] Robyt J.F. 1998. Essentials of Carbohydrate Chemistry. Springer, Boston, 399 pp.

  • [24] Sodhi H.K., Sharma K., Gupta J.K. & Soni S.K. 2005. Production of a thermostable amylase by solid-state fermentation and its synergistic use in the hydrolysis of malt strarch for alcohol production. Process Biochem. 40: 525–534. http://dx.doi.org/10.1016/j.procbio.2003.10.008 [CrossRef]

  • [25] Van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and application of starch converting enzymes of the amylase family. J. Biotechnol. 94: 137–155. http://dx.doi.org/10.1016/S0168-1656(01)00407-2 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ahmad Homaei, Mehri Ghanbarzadeh, and Ferial Monsef
International Journal of Biological Macromolecules, 2015
[2]
Hui Peng, Maojiao Chen, Lu Yi, Xiaohan Zhang, Min Wang, Yazhong Xiao, and Nannan Zhang
Journal of Molecular Catalysis B: Enzymatic, 2015
[3]
Balu Jancy Kalpana and Shunmugiah Karutha Pandian
Journal of Basic Microbiology, 2014, Volume 54, Number 8, Page 802
[4]
Jigang Yu, Chengliang Wang, Yanjin Hu, Yuanqiu Dong, Ying Wang, Xiaoming Tu, Hui Peng, and Xuecheng Zhang
Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2013, Volume 69, Number 3, Page 263
[5]
F. Puspasari, O.K. Radjasa, A.S. Noer, Z. Nurachman, Y.M. Syah, M. van der Maarel, L. Dijkhuizen, Š. Janeček, and D. Natalia
Journal of Applied Microbiology, 2013, Volume 114, Number 1, Page 108
[6]
Yin Lei, Hui Peng, Ying Wang, Yuantao Liu, Fang Han, Yazhong Xiao, and Yi Gao
Applied Microbiology and Biotechnology, 2012, Volume 94, Number 6, Page 1577
[7]
Fernita Puspasari, Zeily Nurachman, Achmad Saefuddin Noer, Ocky Karna Radjasa, Marc J. E. C. van der Maarel, and Dessy Natalia
Starch - Stärke, 2011, Volume 63, Number 8, Page 461
[8]
Dhanya Gangadharan, Priya Ramachandran, Gunasekaran Paramasamy, Ashok Pandey, and K. Nampoothiri
Biologia, 2010, Volume 65, Number 3

Comments (0)

Please log in or register to comment.