Species co-occurrences based on a presence/absence null model for Copepoda and cladocerans in Patagonia and Tierra del Fuego lakes and ponds : Biologia Jump to ContentJump to Main Navigation
Show Summary Details

Biologia


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

149,00 € / $224.00 / £112.00*

Online
ISSN
1336-9563
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Species co-occurrences based on a presence/absence null model for Copepoda and cladocerans in Patagonia and Tierra del Fuego lakes and ponds

1Laboratorio de Limnología y Recursos Hídricos, Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile

2Instituto de la Patagonia, Universidad de Magallanes, Avenida Bulnes 01855, Casilla 113-D, Punta Arenas, Chile

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 65, Issue 6, Pages 1019–1027, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-010-0123-6, October 2010

Publication History

Published Online:
2010-10-15

Abstract

The zooplankton assemblages in southern Chilean Patagonia are characterized by calanoid dominance and low species number that is observable under oligotrophic status and wide conductivity values, whereas at mesotrophic status the daphnids are dominant with high species number, and finally at hyper-saline environments halophilic species such as Artemia persimilis and/or the calanoid Boeckella poopensis predominate. In the present study data of different lakes and ponds between 45-53° S were analyzed, with the aim to determine potential structures at different sites. For this purpose a null model based in guild structure was applied, considering each guild a different kind of water body (lake, small lake, permanent pond, ephemeral pond, and saline lake). The results revealed in two simulations that guild are structured. These results are similar with other descriptions on the basis of null models that revealed a random pattern of species associations for similar ecosystems due to many species repeated in all or practically all studied sites or similarities of ecological features. Ecological and biogeographical topics were discussed.

Keywords: Calanoid; Daphnia; Artemia; lakes; ponds; null model

  • [1] Abelha M.C.F, Goulart E., Kashiwaqui E.A.L. & Da Silva M.R. 2006. Astyanax paranae Eigenmann, 1914 (Characiformes: Characidae) in the Alagados Reservior, Parana, Brazil: diet composition and variation. Neotrop. Ichthyol. 4: 345–356. http://dx.doi.org/10.1590/S1679-62252006000300006 [CrossRef]

  • [2] Araya J.M. & Zúñiga L.R. 1985. Manual taxonómico del zooplancton lacustre de Chile. Boletín Limnológico, Universidad Austral de Chile 8, 169 pp.

  • [3] Bayly I.A.E. 1992a. Fusion of the genera Boeckella and Pseudoboeckella and a revision of their species from South America and Subantarctic islands. Rev. Chil. Hist. Nat. 65: 17–63

  • [4] Bayly I.A.E. 1992b. The non marine Centropagidae (Copepoda, Calanoida) of the world. Guides for the Identification of Microinvertebrates of Freshwaters of the Continental Waters of the World 2, SPB Academic Publishers, Amsterdam, i–iv, 1–30.

  • [5] Brték D. & Mura G. 2000. Revised key to families and genera of the anostraca with notes on their geographical distribution. Crustaceana 79: 1037–1088. http://dx.doi.org/10.1163/156854000505083 [CrossRef]

  • [6] Campos H., Soto D., Parra O., Steffen W. & Agüero G. 1996. Limnological studies of Amarga lagoon, Chile: a saline lake in Patagonia, South America. Int. J. Salt Lake Res. 4: 301–314. http://dx.doi.org/10.1007/BF01999114 [CrossRef]

  • [7] Campos H., Soto D., Stefen W., Agüero G., Parra O. & Zúñiga L. 1994a. Limnological studies of lake del Toro (Chile): morphometry, physics, chemistry and plankton. Arch. Hydrobiol. 99(Suppl.): 199–215.

  • [8] Campos H., Soto D., Stefen W., Agüero G., Parra O., Žúñiga L. 1994b. Limnological studies of lake del Sarmiento (Chile): a subsaline lake from Chilean Patagonia. Arch. Hydrobiol. 99(Suppl.): 217–234.

  • [9] Cañete J. 1999. Determinación de la capacidad de carga del lago Sofía, XII región. Informe Técnico, Fondo de Investigación Pesquera, Chile. FIP-IT/99-26.

  • [10] Costa de Azevedo M.C., Araujo F.G., Machado A.L. & de Araujo Silva M. 2006. Co-occurrence of demersal fishes in a tropical bay in southeastern Brazil: A null model analysis. Est. Coast. Shelf Sci. 66: 315–322. http://dx.doi.org/10.1016/j.ecss.2005.09.006 [CrossRef]

  • [11] Dartnall J.G. 2005. Freshwater invertebrates of subantarctic South Georgia. J. Nat. Hist. 39: 3321–3342. http://dx.doi.org/10.1080/00222930500190186 [CrossRef]

  • [12] De los Ríos P. 2005. Richness and distribution of crustacean zooplankton species in Chilean Andes mountains and southern Patagonia shallow ponds. Pol. J. Env. Stud. 14: 817–822.

  • [13] De los Ríos P. 2008. A null model for explain crustacean zooplankton species associations in central and southern Patagonian inland waters. An. Inst. Patagonia 36: 25–33.

  • [14] De los Ríos P. & Contreras P. 2005. Salinity level for occurrence of calanoids copepods in shallow ponds of South American Altiplano and Chilean Patagonia. Pol. J. Ecol. 53: 445–450.

  • [15] De los Ríos P. & Crespo J. 2004. Salinity effects on the abundance of Boeckella poopoensis (Copepoda, Calanoida) in saline ponds of the Atacama desert, northern Chile. Crustaceana 77: 417–423. http://dx.doi.org/10.1163/1568540041643328 [CrossRef]

  • [16] De los Ríos P. & Soto D. 2007. Crustacean (Copepoda and Cladocera) zooplankton richness in Chilean Patagonian lakes. Crustaceana 80: 285–296. http://dx.doi.org/10.1163/156854007780162433 [CrossRef]

  • [17] De los Ríos P. & Soto D. 2009. Estudios limnológicos en lagos y lagunas del Parque Nacional Torres del Paine (51° S, Chile). An. Inst. Pat. 37: 63–71.

  • [18] De los Ríos P. & Zúñiga O. 2000. Comparación biométrica del lóbulo frontal en poblaciones americanas de Artemia (Anostraca: Artemiidae). Rev. Chil. Hist. Nat. 73: 31–38.

  • [19] De los Ríos P., Acevedo P., Rivera R. & Roa G. 2008a. Comunidades de crustáceos litorales de humedales del norte de la Patagonia chilena (38° S): rol potencial de la exposición a la radiación ultravioleta, pp. 209–229. In: Volpedo A. & Fernandez L. (eds), Efecto de los cambios globales en la diversidad, Programa CYTED 406RT0285.

  • [20] De los Ríos P., Rivera N. & Galindo M. 2008b. The use of null models to explain zooplancton species associations in shallow water bodies of the Magallanes region, Chile. Crustaceana 81: 1219–1228. http://dx.doi.org/10.1163/156854008X374540 [CrossRef]

  • [21] De los Ríos P., Rogers D. C. & Rivera N. 2008c. Branchinecta gaini (Daday, 1910) (Branchiopoda, Anostraca) as a bioindicator of oligotrophic and low conductivity shallow ponds in southern Chilean Patagonia. Crustaceana 81: 1025–1034. http://dx.doi.org/10.1163/156854008X360789 [CrossRef]

  • [22] Dodson S.I. 1992. Predicting crustacean species richness of crustacean zooplankton species richness. Limnol. Oceanogr. 37: 848–856. http://dx.doi.org/10.4319/lo.1992.37.4.0848 [CrossRef]

  • [23] Franca F.G.R. & Araújo A.F.B. 2007. Are there co-occurrence patterns that structure snake communities in Central Brazil? Braz. J. Biol. 67: 33–40. http://dx.doi.org/10.1590/S1519-69842007000100005 [CrossRef]

  • [24] Frutos S.M. 1998. Densidad y diversidad del zooplancton en los ríos Salado y Negro, planicie del río Paraná- Argentina. Rev. Bras. Biol. 58: 431–444. [CrossRef]

  • [25] Gillooly J.F. & Dodson S.I. 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world freshwater cladocerans. Limnol. Oceanogr. 45: 22–30. http://dx.doi.org/10.4319/lo.2000.45.1.0022 [CrossRef]

  • [26] Gotelli N.J. 2000. Null models of species co-occurrence patterns. Ecology 81: 2606–2621. http://dx.doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 [CrossRef]

  • [27] Gotelli N.J. 2001. Research frontiers in null model analysis. Global Ecology Biogeography 10: 337–343. http://dx.doi.org/10.1046/j.1466-822X.2001.00249.x [CrossRef]

  • [28] Gotelli N.J. & Entsminger G.L. 2009. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. http://garyentsminger.com/ecosim.htm (accessed 1.05.2009)

  • [29] Gotelli N.J. & Graves G.R. 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, DC., 357 pp.

  • [30] Hannsson L.A., Dartnall H.J., Ellis-Evans J.C., MacAlister H. & Tranvik L.J. 1996. Variations in physical, chemical and biological components in the subantarctic lakes of South Georgia. Ecography 19: 393–404. DOI: 10.1111/j.1600-0587.1996.tb0004.x http://dx.doi.org/10.1111/j.1600-0587.1996.tb00250.x [CrossRef]

  • [31] Hurlbert S.H., Loayza W. & Moreno T. 1986. Fish flamingo plankton interactions in the Peruvian Andes. Limnol. Oceanogr. 31: 457–468. http://dx.doi.org/10.4319/lo.1986.31.3.0457 [CrossRef]

  • [32] Hurlbert S.H., López M. & Keith J. 1984. Wilson’s phalarope in the Central Andes and its interaction with the Chilean Flamingo. Rev. Chil. Hist. Nat. 57: 47–57.

  • [33] Jeppensen E., Lauridsen T.L., Mitchell S.F. & Burns C.W. 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? N. Z. J. Mar. Freshwater Res. 31: 163–173. http://dx.doi.org/10.1080/00288330.1997.9516755 [CrossRef]

  • [34] Jeppensen E., Lauridsen T.L., Mitchell S.F., Christoffersen K. & Burns C.W. 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plankt. Res. 22: 951–968. http://dx.doi.org/10.1093/plankt/22.5.951 [CrossRef]

  • [35] Luiselli L. 2007. Community ecology of African reptiles: historical perspective and a meta-analysis using null model. Afr. J. Ecol. 46: 384–394. http://dx.doi.org/10.1111/j.1365-2028.2007.00870.x [CrossRef]

  • [36] Luiselli L. 2008a. Do lizard communities partition the trophic niche? A world wide meta-analysis using null models. Oikos 117: 321–330. DOI: 10.1111/j.2007.0030-1299.16297.x http://dx.doi.org/10.1111/j.2007.0030-1299.16297.x [CrossRef]

  • [37] Luiselli L. 2008b. Resource partitioning in freshwater turtle communities: a null model meta-analysis of available data. Acta Oecol. 34: 80–88. DOI: 10.1016/j.actao.2008.04.001 http://dx.doi.org/10.1016/j.actao.2008.04.001 [CrossRef]

  • [38] Luiselli L., Eniang E.A. & Akani G.C. 2007. Non-random structure of a guild of geckos in a fragmented, human altered, African rain forest. Ecol. Res. 22: 593–603. http://dx.doi.org/10.1007/s11284-006-0061-5 [CrossRef]

  • [39] Menu-Marque S., Morrone J.J. & Locascio de Mitrovich C. 2000. Distributional patterns of South American species of Boeckella (Copepoda, Centropagidae): a track analysis. J. Crust. Biol. 20: 262–272. http://dx.doi.org/10.1651/0278-0372(2000)020[0262:DPOTSA]2.0.CO;2 [CrossRef]

  • [40] Modenutti B.E., Balseiro E.G., Queimaliños C.P., Suarez D.A., Dieguez M.C. & Albariño R.J. 1998. Structure and dynamics of food webs in Andean lakes. Lak. Reserv. Res. Manag. 3: 179–186. http://dx.doi.org/10.1046/j.1440-1770.1998.00071.x [CrossRef]

  • [41] Niemeyer H. & Cereceda P. 1984. Hidrografěa. Geografía de Chile, Vol.VIII. Chilean Military Geographic Institute, Santiago de Chile, 320 pp.

  • [42] Paggi J.C. 1999. Status and phylogenetic relationships of Daphnia sarsi Daday 1902 (Crustacea, Anomopoda). Hydrobiologia 403: 27–37. http://dx.doi.org/10.1023/A:1003712715676 [CrossRef]

  • [43] Pugh P.J.A., Dartnall H. & Mcinnes S.J. 2002. The non-marine Crustacea of Antarctica and the islands of the Southern Ocean: biodiversity and biogeography. J. Nat. Hist. 36: 1047–1103. http://dx.doi.org/10.1080/00222930110039602 [CrossRef]

  • [44] Reid J. 1985. Chave de identificao e lista de referencias bibliográficas para as especies continentais sudamericanas de vida libre da orden Cyclopoida (Crustacea, Copepoda). Bol. Zool. Univ. Sao Paulo. 9: 17–143.

  • [45] Ribas C.R. & Schoereder J.H. 2002. Are all ants mosaics caused by competition? Oecologia 131: 606–611. DOI: 10.1007/s00442-002-0912-x http://dx.doi.org/10.1007/s00442-002-0912-x [CrossRef]

  • [46] Rodríguez-Fernandez J.I., Barros de Carvalho C.J. & Moura M.O. 2006. Estrutura de asembleias de Muscidae (Diptera) no Paraná: uma análise por modelos nulos. Rev. Bras. Entomol. 50: 93–100. http://dx.doi.org/10.1590/S0085-56262006000100014 [CrossRef]

  • [47] Rogers D.C., De los Ríos P. & Zúñiga O. 2008. Fairy shrimp (Crustacea, Branchiopoda, Anostraca) of Chile. J. Crust. Biol. 28: 551–563. http://dx.doi.org/10.1651/07-2953.1 [CrossRef]

  • [48] Sanders N.J., Crutsinger G.M., Majer R.R. & Delabie J.H.C. 2007. An ant mosaic revisited: dominant ant species dissemble arboreal ant communities but co-occur randomly. Biotropica 39: 422–427. http://dx.doi.org/10.1111/j.1744-7429.2007.00263.x [CrossRef]

  • [49] Segurado P. & Fiqueiredo D. 2007. Coexistence of two freshwater turtle species along a Mediterranean stream: the role of spatial and temporal heterogeneity. Acta Oecol. 32: 134–144. DOI: 10.1016/j.actao.2007.03.015 http://dx.doi.org/10.1016/j.actao.2007.03.015 [CrossRef]

  • [50] Soto D. 1990. Biomasa zooplanctónica de lagunas Patagónicas y su relación con el flamenco Chileno (Phoenicopterus chilensis), pp. 84–102. In: Actas Primer Taller Internacional de Especialistas en Flamencos Sudamericanos, San Pedro de Atacama, Chile.

  • [51] Soto D., Campos H., Steffen W., Parra O. & Zúñiga L. 1994. The Torres del Paine lake district (Chilean Patagonia): a case of potentially N-limited lakes and ponds. Arch. Hydrobiol. 99: 181–197.

  • [52] Soto D. & De los Ríos P. 2006. Trophic status and conductitivity as regulators of daphnids dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park. Biologia 61: 541–546. http://dx.doi.org/10.2478/s11756-006-0088-7 [CrossRef]

  • [53] Soto D. & Zúñiga L. 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Rev. Chil. Hist. Nat. 64: 569–546.

  • [54] Tiho S. & Johens J. 2007. Co-occurrence of earthworms in urban surroundings: a null models of community structure. Eur. J. Soil Biol. 43: 84–90. DOI: 10.1016/j.ejsobi.2006.10.004 http://dx.doi.org/10.1016/j.ejsobi.2006.10.004 [CrossRef]

  • [55] Tondoh J.E. 2006. Seasonal changes in earthworm diversity and community structure in central Côte d’Ivoire. Eur. J. Soil Biol. 42(Suppl. 1): S334–S340. DOI: 10.1016/j.ejsobi.2006.09.003 http://dx.doi.org/10.1016/j.ejsobi.2006.09.003 [CrossRef]

  • [56] Villalobos L. 1999. Determinación de capacidad de carga y balance de fósforo y nitrógeno de los lagos Riesco, Los Palos y Laguna Escondida en la XI región. Informe Técnico, Fondo de Investigación Pesquera, Chile FIP-IT/97-39.

  • [57] Ulrich W. 2004. Species co-occurrences and neutral models: reassessing J.M. Diamond’s assembly rules. Oikos 107: 603–609. DOI: 10.1111/j.0030-1299.2004.12981.x http://dx.doi.org/10.1111/j.0030-1299.2004.12981.x [CrossRef]

  • [58] Williams W.D., Carrick T.R., Bayly I.A.E., Green J. & Herbst D.B. 1995. Invertebrates of salt lakes of the Bolivian Altiplano. Int. J. Salt Lake Res. 4: 65–77. http://dx.doi.org/10.1007/BF01992415 [CrossRef]

Comments (0)

Please log in or register to comment.