Jump to ContentJump to Main Navigation
Show Summary Details

Biologia


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

149,00 € / $224.00 / £112.00*

Online
ISSN
1336-9563
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Relationships between environmental variables and vegetation across mountain wetland sites, N. Iran

1Department of Biology, Faculty of Basic Science, Shahed University, P.O. Box: 18155-159, Tehran, Iran

2Department of Botany, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran

3Department of Botany, Research Institute of Forests and Rangelands, Tehran, Iran

4Department of Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Mazandaran, Iran

5Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 66, Issue 1, Pages 76–87, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-010-0127-2, December 2010

Publication History

Published Online:
2010-12-21

Abstract

The mountain wetlands studied represent a unique habitat on the southern slopes of the Alborz mountain range, the second largest range in Iran. In comparison with other parts of this range the western section is ecologically and botanically unknown. Floristic and vegetation variation were assessed using diverse environmental variables along a broad altitudinal span (350 m to 3200 m a.s.l.). Using both statistical and ordination analyses floristic variation was assessed on three defined altitudinal belts which were delimited based on Alborz macro-climatic boundaries. The distribution of individual wetland plant species, of phytogeographic elements and of life-forms all differ among altitudinal belts. This result is also shown in both direct and indirect analyses of ordinations. The proportion of geophytes significantly increases with altitude and geophytes are very well represented in the upper altitudinal belt. The number of species of a narrow phytogeographical distribution (e.g. endemics) increases with altitude, soil pH and EC declined with altitude. The first axis of DCA ordination with passively projected environmental variables indicates that, organic matter and concentration of Fe2+ are increased toward higher altitude. The second axis of ordination is related to both soil texture and slope inclination. The distribution of species in the CCA species plot is also close to the distribution of those in the DCA ordination. This study indicates that altitude and slope together with other dependent environmental variables (pH, EC, Ca2+ and soil texture) are the main ecological factors controlling species distribution across the Western Alborz wetland sites.

Keywords: altitudinal gradient; dry mountain wetlands; life form; vegetation ordination; Western Alborz mountain range; Iran

  • [1] Allison L.E. & Moode C.D. 1965. Methods of soil analysis. Part 2. Agronomy Series, No. 9, American Society of Agronomy, Wisconsin Series, 1379 pp

  • [2] Assadi M., Maassoumi A. A., Khatamsaz M. & Mozaffarian V. (eds.) 1988–2008. Flora of Iran. Research Institute of Forests and Rangelands Publication, Tehran (in Persian).

  • [3] Blackstock T.H., Stevens D.P., Stevens P.A., Mockridge C.P. & Yeo M.J.M. 1998. Edaphic relationships among Cirsio-Molinietum and related wet grassland communities in lowland Wales. J. Veg. Sci. 9: 431–444. http://dx.doi.org/10.2307/3237107 [CrossRef]

  • [4] Bootsma M.C. & Wassen M.J. 1996. Environmental conditions and fen vegetation in three lowland mires. Vegetatio 127: 173–189. http://dx.doi.org/10.1007/BF00044639 [CrossRef]

  • [5] Boyer M.L.H. & Wheeler B.D. 1989. Vegetation patterns in spring-fed calcareous fens: calcite precipitation and constraints on fertility. J. Ecol. 77: 597–609. http://dx.doi.org/10.2307/2260772 [CrossRef]

  • [6] Bouyoucus G.J. 1951. A recalibration of the hydrometer for making echanical analysis of soils. Agron. J. 43: 434–438. http://dx.doi.org/10.2134/agronj1951.00021962004300090005x [CrossRef]

  • [7] Bowles M.L., Kelsey P.D. & McBride J.L. 2005. Relationships among environmental factors, vegetation zones and species richness in a North American calcareous prairie fen. Wetlands 25: 685–696. http://dx.doi.org/10.1672/0277-5212(2005)025[0685:RAEFVZ]2.0.CO;2 [CrossRef]

  • [8] Bragazza L. & Gerdol R. 1999. Ecological gradients in some Sphagnum mires in the southeastern Alps (Italy). Appl. Veg. Sci. 2: 55–60. http://dx.doi.org/10.2307/1478881 [CrossRef]

  • [9] Bragazza L., Rydin H. & Gerdol R. 2005. Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog. Plant Ecol. 177: 223–236. http://dx.doi.org/10.1007/s11258-005-2182-2 [CrossRef]

  • [10] Braun-Blanquet J. 1964. Pflanzensoziologie: Grundzüge der Vegetationskunde. 3. neu bearb. Aufl. Springer-Verlag, Wien, 866 pp.

  • [11] Campbell B.M. & Werger, M.J.A. 1988. Plant form in the mountains of the Cape, South Africa. J. Ecol. 76: 637–653. http://dx.doi.org/10.2307/2260564 [CrossRef]

  • [12] Chytrý M., Tichý L. & Roleček J. 2003. Local and regional patterns of species richness in Central European vegetation types along the pH/Calcium gradient. Folia Geobot. 38: 429–442. http://dx.doi.org/10.1007/BF02803250 [CrossRef]

  • [13] Dahlquist R.L. & Knoll J.W. 1978. Inductively Coupled Plasma-Atomic Emission Spectrometry: Analysis of biological materials and soils for major trace, and ultra-trace elements. Appl. Spectrosco. 32:1–30. http://dx.doi.org/10.1366/000370278774331828 [CrossRef]

  • [14] Dai W. & Huang Y. 2006. Relation of soil organic matter concentration to climate and altitude in zonal soils of China. Catena 65: 87–94. http://dx.doi.org/10.1016/j.catena.2005.10.006 [CrossRef]

  • [15] Danin A. & Orshan G. 1990. The distribution of Raunkiaer life forms in Israel in relation to the environment. J. Veg. Sci. 1: 41–48. http://dx.doi.org/10.2307/3236051 [CrossRef]

  • [16] Floret C., Galan M.J., LeFloc’h E., Orshan G. & Romane F. 1990. Growth forms and phenomorphology traits along an environmental gradient: tools for studying vegetation. J. Veg. Sci. 1: 71–80. http://dx.doi.org/10.2307/3236055 [CrossRef]

  • [17] Ganuza A. & Almendros G. 2003. Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables. Biol. Fert Soils 37: 154–162.

  • [18] Grandy A.S., Strickland M.S., Lauber C.L., Bradford M.A. & Fiere N. 2009. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150: 278–286. http://dx.doi.org/10.1016/j.geoderma.2009.02.007 [CrossRef]

  • [19] Grisi B., Grace C., Brookes P.C., Beneddetti A. & Dell’abate M.T. 1998. Temperature effects on organic matter and microbial biomass dynamics in temperate tropical soil. Soil Biol. Biochem. 30:1309–1315. http://dx.doi.org/10.1016/S0038-0717(98)00016-9 [CrossRef]

  • [20] Grybos M., Davranche M., Gruau G. & Petitjean P. 2007. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Colloid Interface Sci. 314: 490–501. http://dx.doi.org/10.1016/j.jcis.2007.04.062 [CrossRef]

  • [21] Hájek M., Hájková P., Sopotlieva D., Apostolova I.I. & Velev N. 2008. The Balkan wet grassland vegetation: a prerequisite to better understanding of European habitat diversity. Plant Ecol. 195: 197–213. http://dx.doi.org/10.1007/s11258-007-9315-8 [CrossRef]

  • [22] Henrot J. & Wieder R.K. 1990. Processes of iron and manganese retention in laboratory peat microcosms subjected to acid mine drainage. J. Environ. Qual. 19: 312–320. http://dx.doi.org/10.2134/jeq1990.00472425001900020018x [CrossRef]

  • [23] Hontoria C., Rodriguez-Murillo J.C. & Saa A. 1999. Relationships between soil organic carbon and site characteristics in peninsular Spain. Soil Sci. Soc. Am. J. 63: 614–621. http://dx.doi.org/10.2136/sssaj1999.03615995006300030026x [CrossRef]

  • [24] Huang R. 1994. Environmental pedology. Advanced Education Press, Beijing, pp. 145–146. (In Chinese)

  • [25] Jafari S. M. & Akhani H. 2008. Plants of Jahan Nama Protected Area, Golestan province, N. Iran. Pak. J. Bot. 40: 1533–1554.

  • [26] Khalili A. 1973. Precipitation patterns of Central Alburz. Arch. Met. Geoph. Biokl. Ser. B 21: 215–232. http://dx.doi.org/10.1007/BF02243729 [CrossRef]

  • [27] Kessler M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecol. 149: 181–193. http://dx.doi.org/10.1023/A:1026500710274 [CrossRef]

  • [28] Klein J.C. 1984. Les groupements végétaux d’altitude de l’Alborz central (Iran). Ecologie des milieux montagnards et de haute altitude. Docum. Ecol. Pyrénéenne 3–5:199–204.

  • [29] Klein J.C. 2001. La végétation altitudinale de L’Alborez Central (Iran): entre les régions irano-touranienne et euro-sibérienne. Téhéran: Institut Franşais de Recherche en Iran.

  • [30] Klein J.C. & Lacoste A. 1995. Les pozzines à Carex orbicularis Boott subsp. kotschyana de l’Alborz central (Iran): groupement à la charnière des régions euro-sibérienne et iranotouranienne. Ecol. Medit. 12: 75–86.

  • [31] Klein J.C. & Lacoste A. 1998. L’étagement de végétation dans le Massif de l’Alborz central (Iran): essai de comparaison avec celui du systéme alpin et desmontagnes méditerranéennes. Ecologie 29: 181–186.

  • [32] Klimeš L. 2003. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl. Ecol. 4: 317–328. http://dx.doi.org/10.1078/1439-1791-00163 [CrossRef]

  • [33] Kutnar L. & Martinčič A. 2003. Ecological relationships between vegetation and soil-related variables along mire margin-mire expanse gradient in the eastern Julian Alps, Slovenia. Ann. Bot. Fennici 40: 177–189.

  • [34] Lemenih, M. & Itanna, F. 2004. Soil carbon stocks and turnovers in various vegetation type and arable lands along an elevation gradient in southern Ethiopia. Geoderma 123: 177–188. http://dx.doi.org/10.1016/j.geoderma.2004.02.004 [CrossRef]

  • [35] Lepš J. & Šmilauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, 269 pp.

  • [36] Lyon J. & Gross N.M. 2005. Patterns of plant diversity and plant-environmental relationships across three riparian corridors. Forest Ecol. Manag. 204: 267–278. http://dx.doi.org/10.1016/j.foreco.2004.09.019 [CrossRef]

  • [37] Malmer N. 1986. Vegetational gradients in relation to environmental conditions in north western European mires. Can. J. Bot. 64: 375–383. http://dx.doi.org/10.1139/b86-054 [CrossRef]

  • [38] Mengel K. 1982. Dynamics and availability of major nutrients in soils. Adv. Soil Sci. 2: 65–131.

  • [39] Miserere L., Montacchini F. & Buffa G. 2003. Ecology of some mire and bog plant communities in the Western. Italian Alps. J. Limnol. 62: 88–96. [CrossRef]

  • [40] Montana C. & Valientebanuet A. 1998. Floristic and life-form diversity along an altitudinal gradient in an intertropical semiarid Mexican region. Southwest. Nat. 43: 25–39.

  • [41] Mueller-Dombois D. & Ellenberg H. 1974. Aims and methods of vegetation ecology. Wiley & Sons, New York.

  • [42] Naqinezhad A., Jalili A., Attar F., Ghahreman A., Wheeler B.D., Hodgson J.G., Shaw S.C. & Maassoumi A. 2009. Floristic characteristics of the wetland sites on dry southern slopes of the Alborz Mts., N. Iran: The role of altitude in floristic composition. Flora. 204: 254–269.

  • [43] Nazarian H., Ghahreman A., Atri M. & Assadi M. 2004. Ecological factors affecting parts of vegetation in north Iran (Elika and Duna Watersheds) by employing eco-phytosociological method. Pak. J. Bot. 36: 41–64.

  • [44] Nekola J.C. 2004. Vascular plant compositional gradients within and between Iowa fens. J. Veg. Sci. 15: 771–780. [CrossRef]

  • [45] Nelson D.W. & Sommers L.E. 1996. Total carbon, organic carbon and organic matter. In: Page A.L. et al., Methods of Soil Analysis, Part 2, 2nd ed. Agronomy 9:961–1010. Am. Soc. of Agron., Inc. Madison, WI.

  • [46] Noroozi J., Akhani H. & Breckle S.W. 2008. Biodiversity and phytogeography of the alpine flora of Iran. Biodivers. Coserv. 17: 493–521. http://dx.doi.org/10.1007/s10531-007-9246-7 [CrossRef]

  • [47] Norrström A.C. 1995. Concentration and chemical species of iron in soils from groundwater/surface water ecotones. Hydrol. Sci. 40: 319–329. http://dx.doi.org/10.1080/02626669509491418 [CrossRef]

  • [48] Noy-Meir I. & Oron T. 2001. Effects of grazing on geophytes in Mediterranean vegetation. J. Veg. Sci. 12: 749–760. http://dx.doi.org/10.2307/3236862 [CrossRef]

  • [49] Odland A. 2009. Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecol. Indic. 9: 409–421. http://dx.doi.org/10.1016/j.ecolind.2008.05.012 [CrossRef]

  • [50] Page A. L. (eds). 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd Ed., ASA, SSA, Madison, WI 53711.

  • [51] Pavón N.P., Hernandez-Trejo H. & Rico-Gray V. 2000. Distribution of plant life forms along an altitudinal gradient in the semi-arid valley of Zapotitlan, Mexico. J. Veg. Sci. 11: 39–42. http://dx.doi.org/10.2307/3236773 [CrossRef]

  • [52] Petraglia A. & Tomaselli M. 2003. Ecological profiles of wetland plant species in the northern Apennines (N. Italy). J. Limnol. 62: 71–78. [CrossRef]

  • [53] Pinto J.R.R., Oliveira-Filho A.T. & Hay J.D.V. 2006. Influence of soil and topography on the composition of a tree community in a Central Brazilian valley forest. Edinb. J. Bot. 62: 69–90. http://dx.doi.org/10.1017/S0960428606000035 [CrossRef]

  • [54] Raunkiaer C. 1934. The life forms of plants and statistical plant geography. Oxford, Charendon Press.

  • [55] Rechinger K.H. (eds). 1963–2005. Flora Iranica. Vols. 1–173, Akademische Druck-U., Verlagsanstalt, Graz.

  • [56] Rolon A.S. & Maltchik L. 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221–231 http://dx.doi.org/10.1007/s10750-005-1364-1 [CrossRef]

  • [57] Ross S.M. 1995. Overview of the hydrochemistry and solute process in British wetlands, pp. 133–180. In: Hoghes J.M.R. & Hoghes A.L.H. (eds), Hydrology and hydrochemistry of British wetlands, John Willy & Sons.

  • [58] Sabeti H. 1969. Les Etudes Bioclimatique de L’Iran. Universite’ de Téhéran, Tehran.

  • [59] Sims Z.R. & Nielsen G.A. 1986. Organic carbon in Montana soils as related to clay content and climate. Soil Sci. Soc. Am. J. 50: 1269–1271. http://dx.doi.org/10.2136/sssaj1986.03615995005000050037x [CrossRef]

  • [60] Sjörs H. & Gunnarsson U. 2002. Calcium and pH in north and central Swedish mire waters. J. Ecol. 90: 650–657. http://dx.doi.org/10.1046/j.1365-2745.2002.00701.x [CrossRef]

  • [61] Sterling A. 1996. Los sotos, refugio de vida Silvestre. Ministerio de Agricultura Pesca y Alimentacion, Madrid.

  • [62] Stöcklin J. 1974. Northern Iran: Alborz Mountains. Geological Society, London, Special Publications 4: 213–234. http://dx.doi.org/10.1144/GSL.SP.2005.004.01.12 [CrossRef]

  • [63] Tahvanainen T., Sallantaus T., Heikkila R. & Tolonen K. 2002. Spatial variation of mire surface water chemistry and vegetation in north-eastern Finland. Ann. Bot. Fenn. 39: 235–251.

  • [64] Takhtajan A. 1986. Floristic regions of the world. University of California Press, Berkley, Los Angeles, London.

  • [65] Tarutis J. T. Jr, Unz R. F. & Brooks R. P. 1992. Behavior of sedimentary Fe and Mn in a natural wetland receiving acidic mine drainage, Pennsylvania, USA. Appl. Geochem. 7: 77–85. http://dx.doi.org/10.1016/0883-2927(92)90016-V [CrossRef]

  • [66] Tate K.R. 1992. Assessment based on a climosequence of soil in tussock grasslands of soil carbon storage and release in response to global warming. J. Soil Sci. 43: 697–707. http://dx.doi.org/10.1111/j.1365-2389.1992.tb00169.x [CrossRef]

  • [67] ter Braak C.J.F. 1987. The analysis of vegetation-environment relationships by Canonical correspondence analysis. Vegetatio 69: 69–77. http://dx.doi.org/10.1007/BF00038688 [CrossRef]

  • [68] ter Braak C.J.F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for windows User’s Guide: Software for canonical community ordination (version 4.5). Microcomputer Power (Ithaca NY, USA), 500 pp.

  • [69] Tregubov V. & Mobayen S. 1970. Guide pour la carte de la végétation naturelle de l’ Iran. 1:2500000. Bull. 14, Project UNDP/FAO IRA 7, 18 pp.

  • [70] Vetaas O.R. & Grytnes J.A. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol. Biogeogr. 11: 291–301. http://dx.doi.org/10.1046/j.1466-822X.2002.00297.x [CrossRef]

  • [71] Vitt D.H. 2000. Peat lands: ecosystems dominated by bryophytes, pp. 312–343. In: Shaw A.J. & Goffinet B. (eds), Bryophyte biology, Cambridge University Press, Cambridge.

  • [72] Wang G., Zhou G., Yang L. & Li Z. 2002. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecol. 165: 169–181. http://dx.doi.org/10.1023/A:1022236115186 [CrossRef]

  • [73] Waughmann G.J. 1980. Chemical aspects of the ecology of some south German peat lands. J. Ecol. 68: 1025–1046. http://dx.doi.org/10.2307/2259473 [CrossRef]

  • [74] Wheeler B.D. & Proctor M.C.F. 2000. Ecological gradients, subdivisions and terminology of north-west European mires. J. Ecol. 88: 187–203. http://dx.doi.org/10.1046/j.1365-2745.2000.00455.x [CrossRef]

  • [75] Wheeler B.D. & Shaw S.C. 1995. A focus on fens-controls on the composition of fen vegetation in relation to restoration, pp. 49–72. In: Wheeler B.D., Shaw S.C., Fojt W.J. & Robertson R.A. (eds), Restoration of Temperate Wetlands, John Wiley & Sons, Chichester.

  • [76] Wheeler B.D. & Shaw S.C. 2000. A wetland framework for impact assessment at statutory sites in Eastern England. Environment Agency. R&D Technical Report W6-068/TR1

  • [77] Zelnik I. & Čarni A. 2008. Wet meadows of the alliance Molinion and their environmental gradients in Slovenia. Biologia 63: 187–196. http://dx.doi.org/10.2478/s11756-008-0042-y [CrossRef]

  • [78] Zhi-An L., Bi Z., Han-Ping X., Yong-Zhen D., Wan-Neng T. & Sheng-Lei F. 2008. Role of low-molecule-weight organic acids and their salts in regulating soil pH. Pedosphere 18: 137–148. http://dx.doi.org/10.1016/S1002-0160(08)60001-6 [CrossRef]

  • [79] Zohary M. 1973. Geobotanical foundations of the Middle East. 2 vols. Fischer Verlag, Stuttgart, Amsterdam.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hossein Akhani, Parastoo Mahdavi, Jalil Noroozi, and Vajiheh Zarrinpour
Folia Geobotanica, 2013, Volume 48, Number 2, Page 229
[2]
Anne Dubuis, Sara Giovanettina, Loïc Pellissier, Julien Pottier, Pascal Vittoz, Antoine Guisan, and Duccio Rocchini
Journal of Vegetation Science, 2013, Volume 24, Number 4, Page 593

Comments (0)

Please log in or register to comment.