Jump to ContentJump to Main Navigation


12 Issues per year

IMPACT FACTOR increased in 2013: 0.696
5-year IMPACT FACTOR: 0.751

SCImago Journal Rank (SJR): 0.306
Source Normalized Impact per Paper (SNIP): 0.555



Open Access

Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India

1National Bureau of Agriculturally Important Microorganisms

2Rani Durgavati University

3Indian Agricultural Research Institute

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 66, Issue 5, Pages 741–747, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-011-0094-2, August 2011

Publication History

Published Online:


Culture dependent phenotypic characterization and 16S rDNA based phylogenetic analyses were applied to study the aerobic halophilic bacterial population present in the Pulicat brackish-water Lake of India. Five different media were employed for isolation of bacteria. A total of 198 morphotypes were recovered, purified and screened for salt tolerance in nutrient agar medium amended with 5–25% NaCl. Based on 16S rDNA restriction fragment length polymorphism analysis with three restriction endonucleases, 51 isolates tolerant to 5% or more NaCl were grouped into 29 clusters. Phylogenetic analysis using 16S rRNA gene sequences revealed that 29 strains could further be allocated into two clades: 19 to Firmicutes and 10 to γ-Proteobacteria. Firmicutes included low G+C Gram-positive bacteria related to family Bacillaceae, which included five genera Bacillus, Virgibacillus, Rummelibacillus, Alkalibacillus and Halobacillus. Another genera included in Firmicutes was Salimicrobium halophilum. In the γ-Proteobacteria group, all the isolates belonged to one genus Halomonas, represented by six different species Halomonas salina, H. shengliensis, H. salifodinae, H. pacifica, H. aquamarina and H. halophila. Most of the isolates exhibited cellulase, xylanase, amylase and protease activities.

Keywords: hydrolytic enzymes; halophilic bacteria; phylogenetic analysis; sequencing

  • [1] Adams M.W.W. & Kelly R.M. 1995. Enzymes from microorganisms in extreme environments. Chem. Eng. News 73: 32–42. http://dx.doi.org/10.1021/cen-v073n051.p032 [CrossRef]

  • [2] Amoozegar M.A., Malekzadeh F. & Malik K.A. 2003. Production of amylase by newly isolated moderate halophile Halobacillus sp. strain MA-2. J. Microbiol. Methods 52: 353–359. http://dx.doi.org/10.1016/S0167-7012(02)00191-4 [CrossRef]

  • [3] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38: D46–D51. http://dx.doi.org/10.1093/nar/gkp1024 [CrossRef]

  • [4] Birbir M. & Ilgaz A. 1996. Isolation and identification of bacteria adversely affecting hide and leather quality. J. Soc. Leather Technol. Chem. 80: 147–153.

  • [5] Bowen B.B. & Benison K.C. 2009. Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia: Appl. Geochem. 24: 268–284. http://dx.doi.org/10.1016/j.apgeochem.2008.11.013 [CrossRef]

  • [6] Castro G.R., Ferrero M.A., Mendez B.S. & Sineriz F. 1993. Screening and selection of bacteria with high amylolytic activity. Acta Biotechnol. 13: 197–201. http://dx.doi.org/10.1002/abio.370130220 [CrossRef]

  • [7] Edwards U., Rogall T., Blocker H., Emde M. & Bottger E.C. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843–7853. http://dx.doi.org/10.1093/nar/17.19.7843 [CrossRef]

  • [8] Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376. http://dx.doi.org/10.1007/BF01734359 [CrossRef]

  • [9] Garabito M.J., Marquez M.C. & Ventosa A. 1998. Halotolerant Bacillus diversity in hypersaline environments. Can. J. Microbiol. 44: 95–102.

  • [10] Gray J.P. & Herwing R.P. 1996. Phylogenetic analysis of the bacterial communitities in marine sediments. Appl. Environ. Microbiol. 62: 4049–4059.

  • [11] Horikoshi K. 1991. Microorganisms in Alkaline Environment. Kodansha, Tokyo, 275 pp.

  • [12] Horikoshi K. 1999. Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735–750.

  • [13] Horikoshi K. & Akiba T. 1982. Alkalophilic Microorganisms: A New Microbial World. Springer, New York.

  • [14] Jaccard P. 1912. The distribution of the flora in the alpine zone. New Phytol. 11: 37–50. http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x [CrossRef]

  • [15] Jiang H., Dong H., Yu B., Liu X., Li Y., Ji S. & Zhang C.L. 2007. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ. Microbiol. 10: 2603–2621. http://dx.doi.org/10.1111/j.1462-2920.2007.01377.x [CrossRef]

  • [16] Joshi A.A., Kanekar P.P., Kelkar A.S., Shouche Y.S., Vani A.A., Borgave S.B. & Sarnaik S.S. 2008. Cultivable bacterial diversity of alkaline Lonar lake, India. Microb. Ecol. 55: 163–172. http://dx.doi.org/10.1007/s00248-007-9264-8 [CrossRef]

  • [17] Kamekura M., Seno Y., Holmes M.L. & Dyall Smith M.L. 1992. Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaeal strain (172P1) and expression of the gene in Haloferax volcanii. J. Bacteriol. 174: 736–742.

  • [18] Kanekar P.P., Nilegaonkar S.S., Sarnaik S.S. & Kelkar A.S. 2002. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Biores. Technol. 85: 87–93. http://dx.doi.org/10.1016/S0960-8524(02)00018-4 [CrossRef]

  • [19] Kobayashi T., Kanai H., Aono R., Horikoshi K. & Kudo T. 1994. Cloning, expression and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. AH336. J. Bacteriol. 176: 5131–5134.

  • [20] Krulwich T.A. & Guffanti A.A. 1983. Physiology of acidophilic and alkalophilic bacteria. Adv. Microb. Physiol. 24: 173–214. http://dx.doi.org/10.1016/S0065-2911(08)60386-0 [CrossRef]

  • [21] Li N., Patel B.K.C., Mijts B.N. & Swaminathan K. 2002. Crystallization of an α-amylase, AmyA, from the thermophilic halophile Halothermothrix orenii. Acta Cryst. D58: 2125–2126.

  • [22] Ma Y., Weizhou Z., Xue Y., Zhon P., Ventosa A. & Grant W.D. 2004. Bacterial diversity of the inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analysis. Extremophiles 8: 45–51. http://dx.doi.org/10.1007/s00792-003-0358-z [CrossRef]

  • [23] Mellado M.E. & Ventosa A. 2003. Biotechnological potential of moderately and extremely halophilic microorganisms, pp. 233–256. In: Barredo J.L. (ed.) Microorganisms for Health Care, Food and Enzyme Production. Research Signpost, Kerala.

  • [24] Nagaraju M., Prasad K.S.S. & Narasimharao K.L. 1990. Geochemistry of lake waters of Pulicat, India. GeoJournal 20: 311–318. http://dx.doi.org/10.1007/BF00642996 [CrossRef]

  • [25] Nei M. & Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273. http://dx.doi.org/10.1073/pnas.76.10.5269 [CrossRef]

  • [26] Pospiech A. & Neumann B. 1995. A versatile quick-prep of genomic DNA from gram positive bacteria. Trends Genet. 11: 217–218. http://dx.doi.org/10.1016/S0168-9525(00)89052-6 [CrossRef]

  • [27] Rohban R., Amoozegar M.A. & Ventosa A. 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolases from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36: 333–340. http://dx.doi.org/10.1007/s10295-008-0500-0 [Web of Science] [CrossRef]

  • [28] Saitou N. & Nei M. 1987. The neighbour joining method a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. [Web of Science]

  • [29] Sharon A., Cantrella L., Casillas M. & Marirosa M. 2006. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110: 962–970. http://dx.doi.org/10.1016/j.mycres.2006.06.005 [CrossRef]

  • [30] Takami H., Kobata K., Nagahama T., Kobayashi H., Inoue A. & Horikoshi K. 1999. Biodiversity in deep sea sites located near the south part of Japan. Extremophiles 3: 97–102. http://dx.doi.org/10.1007/s007920050104 [CrossRef]

  • [31] Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.2. Mol. Biol. Evol. 24: 1596–1599. http://dx.doi.org/10.1093/molbev/msm092

  • [32] Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving sensitivity of progressive multiple sequence alignments through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–7680. http://dx.doi.org/10.1093/nar/22.22.4673 [CrossRef]

  • [33] Urakawa H., Tsukamoto K.K. & Ohwada K. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145: 3305–3315.

  • [34] Ventosa A. & Nieto J.J. 1995. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol.11: 85–94. http://dx.doi.org/10.1007/BF00339138 [CrossRef]

  • [35] Ventosa A., Nieto J.J. & Oren A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.

  • [36] Waino M., Tindall B.J., Schumann P. & Ingvorsen K. 1999. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov., transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol. 49: 821–831. http://dx.doi.org/10.1099/00207713-49-2-821 [CrossRef]

  • [37] Wang Y., Wu Y.H., Wang C.S., Xu X.W., Oren A., Zhu X.F. & Wu M. 2008. Halomonas salifodinae sp. nov., a halophilic bacterium isolated from a salt mine in China. Int. J. Syst. Evol. Microbiol. 58: 2855–2858. http://dx.doi.org/10.1099/ijs.0.2008/000729-0 [Web of Science] [CrossRef]

  • [38] Wang Y.N., Cai H., Chi C.Q., Lu A.H., Lin X.G., Jiang Z.F. & Wu X.L. 2007. Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude oil utilizing bacterium. Int. J. Syst. Evol. Microbiol. 57: 1222–1226. http://dx.doi.org/10.1099/ijs.0.64973-0 [CrossRef]

  • [39] Wejse P.L. & Ingvorsen K. 2003. Purification and characterization of two extremely halotolerant xylanase from a novel halophilic bacterium. Extremophiles 7: 423–431. http://dx.doi.org/10.1007/s00792-003-0342-7 [CrossRef]

  • [40] Yeon S.H., Jeong W.J. & Park J.S. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. J. Microbiol. 43: 1–10.

  • [41] Yoon J.H., Kang S.J. & Oh T.K. 2007. Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov. Int. J. Syst. Evol. Microbiol. 57: 2406–2411. http://dx.doi.org/10.1099/ijs.0.65003-0 [CrossRef] [Web of Science]

  • [42] Yoon J.H., Kang K.H. & Park Y.H. 2003. Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 53: 687–693. http://dx.doi.org/10.1099/ijs.0.02421-0 [CrossRef]

  • [43] Yoon J.H., Weiss N., Lee K.C., Lee I.S., Kang K.H. & Park Y.H. 2001. Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Rueger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 2087–2093. http://dx.doi.org/10.1099/00207713-51-6-2087 [CrossRef]

  • [44] Zhou X.H. & Li Z. 2004. CMCase activity assay as a method for cellulose adsorption analysis. Enzyme. Microbiol. Technol. 35: 455–459. http://dx.doi.org/10.1016/j.enzmictec.2004.07.005 [CrossRef]

Comments (0)

Please log in or register to comment.