The effect of chemical signal of predatory fish and water bug on the morphology and development of Elachistocleis bicolor tadpoles (Anura: Microhylidae) : Biologia Jump to ContentJump to Main Navigation
Show Summary Details

Biologia


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

149,00 € / $224.00 / £112.00*

Online
ISSN
1336-9563
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

The effect of chemical signal of predatory fish and water bug on the morphology and development of Elachistocleis bicolor tadpoles (Anura: Microhylidae)

1Centro de Ecología Aplicada del Litoral (CECOAL-CONICET), Ruta 5, Km 2.5 Corrientes, Argentina, C.P. 3400, Argentina

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 67, Issue 5, Pages 1001–1006, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-012-0082-1, August 2012

Publication History

Published Online:
2012-08-23

Abstract

Changes in environmental conditions can induce organisms to alter their morphology, behavior and life history. Predation is an important factor in many aquatic communities and can strongly select for anti-predator responses. In the present work, we examined the responses in morphology, growth rate and development rate of Elachistocleis bicolor tadpoles raised in the presence of chemical cues from two different predators: a water bug (Belostoma elongatum) and a fish (Moenkausia dichroura). The experiment was performed in microcosm conditions. The experimental design consisted of three treatments: chemical cues from fish, cues from water bugs and a control group. Each treatment was replicated 30 times. Each container held a single larva. The main results were: (1) there were significant differences in body depth between the predator treatments (fish vs. water bug) and between the control group and the water bug treatment, (2) there were significant differences in tail depth between predator treatments (fish vs. water bug) and between the control group and the fish treatment, (3) there were no significant differences in the growth rate and developmental rate among the treatments. Our results suggest that the presence of predaceous fish and water bugs cause different effects on tadpole morphology. In the presence of water bugs, tadpoles decreased body depth, whereas in the presence of fish tadpoles increased tail depth. These responses could be related to the way in which predators capture their prey. Predator chemical cues did not have any detectable effect on the growth rate and development rate of E. bicolor tadpoles.

Keywords: phenotypic plasticity; predators; tadpoles

  • [1] Addinsoft. 2006. XLSTAT version 7. 5. for Excel interface. Addinsoft, U.K.

  • [2] Benard M.F. 2006. Survival trade-offs between two predator induced phenotypes in Pacific treefrogs (Pseudacris regilla). Ecology 87(2): 340–346. DOI: 10.1890/05-0381 http://dx.doi.org/10.1890/05-0381 [CrossRef]

  • [3] Benard M.F. 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. Ann. Rev. Ecol. Evol. Syst. 35: 651–673. DOI: 10.1146/annurev.ecolsys.35.021004.112426 http://dx.doi.org/10.1146/annurev.ecolsys.35.021004.112426 [CrossRef]

  • [4] Blaustein L. 1999. Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community structure, pp. 442–456. In: Wasser S.P. (ed.), Evolutionary Theory and Processes: Modern Perspectives, Kluwer Academic Publishers, Netherlands. ISBN: 0792355180

  • [5] Blaustein L., Friedman F. & Fahima T. 1996. Larval Salamandra drive temporary pool community dynamics: evidence from an artificial pool experiment. Oikos 76(2): 392–402. DOI: 10.2307/3546211 http://dx.doi.org/10.2307/3546211 [CrossRef]

  • [6] Darlington R.B. & Smulders T.V. 2001. Problems with residuals analysis. Anim. Behav. 62: 599–602 Part 3. DOI: 10.1006/anbe.2001.1806 http://dx.doi.org/10.1006/anbe.2001.1806 [CrossRef]

  • [7] Gómez V.I. & Kehr A.I. 2011. Morphological and developmental responses of anuran larvae (Physalaemus albonotatus) to chemical cues from predators Moenkausia dichroura (Characiformes: Characidae) and Belostoma elongatum (Hemiptera: Belostomatidae). Zool. Stud. 50(2): 203–210.

  • [8] Gomulkiewicz R. & Kirkpatrick M. 1992. Quantitative genetics and the evolution of reaction norms. Evolution 46(2): 390–411. DOI: 10.2307/2409860 http://dx.doi.org/10.2307/2409860 [CrossRef]

  • [9] Gosner K.L. 1960. A simplified table for staging anurans embryos and larvae with notes of identification. Herpetologica 16(3): 183–190.

  • [10] Hews D.K. 1988. Alarm response in larval western toads, Bufo boreas: release of larval chemicals by a natural predator and its effect on predator capture efficiency. Anim. Behav. 36(1): 125–133. DOI: 10.1016/S0003-3472(88)80255-0 http://dx.doi.org/10.1016/S0003-3472(88)80255-0 [CrossRef]

  • [11] Holling C.S. 1964. The analysis of complex population processes. Canad. Entomol. 96(1–2): 335–347. DOI: 10.4039/Ent963-4 http://dx.doi.org/10.4039/Ent96335-1 [CrossRef]

  • [12] Kiesecker J.M., Chivers D.P., Anderson M. & Blaustein A.R. 2002. Effect of predator diet on life history shifts of red-legged frogs, Rana aurora. J. Chem. Ecol. 28(5): 1007–1015. DOI: 10.1023/A:1015261801900 http://dx.doi.org/10.1023/A:1015261801900 [CrossRef]

  • [13] Kishida O., Mizuta Y. & Nishimura K. 2006. Reciprocal phenotypic plasticity in a predator-prey interaction between larval amphibians. Ecology 87(6): 1599–1604. DOI: 10.1890/0012-9658(2006)87[1599:RPPIAP]2.0.CO;2 http://dx.doi.org/10.1890/0012-9658(2006)87[1599:RPPIAP]2.0.CO;2 [CrossRef]

  • [14] Kishida O. & Nishimura K. 2005. Multiple inducible defenses against multiple predators in the anuran tadpole, Rana pirica. Evol. Ecol. Res. 7(4): 619–631.

  • [15] Lardner B. 2000. Morphological and life history response to predators in larvae of seven anurans. Oikos 88(1): 169–180. DOI: 10.1034/j.1600-0706.2000.880119.x http://dx.doi.org/10.1034/j.1600-0706.2000.880119.x [CrossRef]

  • [16] Laurila A., Pakkasmaa S. & Merila J. 2006. Population divergence in growth rate and antipredator defenses in Rana arvalis. Oecologia 147(4): 585–595. DOI: 10.1007/s00442-005-0301-3 http://dx.doi.org/10.1007/s00442-005-0301-3 [CrossRef]

  • [17] Laurila A., Pakkasmaa S. & Merila J. 2004. Temporal variation in predation risk: stage-dependency, graded responses and fitness costs in tadpole antipredator defenses. Oikos 107(1): 90–99. DOI: 10.1111/j.0030-1299.2004.13126.x http://dx.doi.org/10.1111/j.0030-1299.2004.13126.x [CrossRef]

  • [18] Lima S.L. & Dill L.M. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68(4): 619–640. DOI: 10.1139/z90-092 http://dx.doi.org/10.1139/z90-092 [CrossRef]

  • [19] McCollum S.A. & Van Buskirk J. 1996. Costs and benefits of a predator-induced polyphenism in the Gray treefrog Hyla chrysoscelis. Evolution 50(2): 583–593. DOI: 10.2307/2410833 http://dx.doi.org/10.2307/2410833 [CrossRef]

  • [20] Moran N.A. 1992. The evolutionary maintenance of alternative phenotypes. Am. Nat. 139(5): 971–989. http://dx.doi.org/10.1086/285369

  • [21] Peacor S.D. & Werner E.E. 2004. Context dependent of nonlethal effect of a predator on prey growth. Isr. J. Zool. 50(2–3): 139–157. DOI: 10.1560/KPRR-X1C3-5NHE-QV2N http://dx.doi.org/10.1560/KPRR-X1C3-5NHE-QV2N [CrossRef]

  • [22] Relyea R.A. 2007. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152(3): 389–400. DOI: 10.1007/s00442-007-0675-5 http://dx.doi.org/10.1007/s00442-007-0675-5 [Web of Science] [CrossRef]

  • [23] Relyea R.A. 2003. Predators come and predators go: The reversibility of predator-induced traits. Ecology 84(7): 1840–1848. DOI: 10.1890/0012-9658(2003)084[1840:PCAPGT]2.0.CO;2 http://dx.doi.org/10.1890/0012-9658(2003)084[1840:PCAPGT]2.0.CO;2 [CrossRef]

  • [24] Relyea R.A. 2001a. The relationship between predation risk and antipredator responses in larval anurans. Ecology 82(2): 541–554. DOI: 10.1890/0012-9658(2001)082[0541:TRBPRA] 2.0.CO;2 http://dx.doi.org/10.1890/0012-9658(2001)082[0541:TRBPRA]2.0.CO;2 [CrossRef]

  • [25] Relyea R.A. 2001b. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82(2): 523–540. DOI: 10.1890/0012-9658(2001)082[0523: MABPOL]2.0.CO;2 http://dx.doi.org/10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2 [CrossRef]

  • [26] Relyea R.A. & Werner E.E. 2000. Morphological plasticity in four larval anurans distributed along an environmental gradient. Copeia 2000(1): 178–190 DOI: 10.1643/0045-8511(2000)2000[0178:MPIFLA]2.0.CO;2) http://dx.doi.org/10.1643/0045-8511(2000)2000[0178:MPIFLA]2.0.CO;2 [CrossRef]

  • [27] Schlichting C.D. & Pigliucci M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sinauer Associates Publishers, Sunderland, MA, 340 pp. ISBN: 0-87893-799-4

  • [28] Skelly D.K. 2001. Distribution of pond-breeding anurans: an overview of mechanisms. Isr. J. Zool. 47(4): 313–332. DOI: 10.1560/BVT1-LUYF-2XG6-B007 http://dx.doi.org/10.1560/BVT1-LUYF-2XG6-B007 [CrossRef]

  • [29] SPSS. 1997. SYSTAT 7.5 for Window. SPSS Inc. Chicago-USA.

  • [30] Teplitsky C., Plénet S. & Joly P. 2003. Tadpoles responses to the risk of fish introduction. Oecologia 134(2): 270–277. DOI: 10.1007/s00442-002-1106-2 [CrossRef]

  • [31] Teplitsky C., Plénet S. & Joly P. 2004. Hierarchical responses to tadpoles to multiple predators. Ecology 85(10): 2888–2894. DOI: 10.1890/03-3043 http://dx.doi.org/10.1890/03-3043 [CrossRef]

  • [32] Teplitsky C., Plénet S., Lena J.P., Mermet N., Malet E. & Joly P. 2005. Escape behavior and ultimate causes of specific induces defenses in an anuran tadpole. J. Evol. Biol. 18(1): 180–190. DOI: 10.1111/j.1420-9101.2004.00790.x http://dx.doi.org/10.1111/j.1420-9101.2004.00790.x [CrossRef]

  • [33] Tollrian R. & Harvell D. (eds) 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, NJ, 383 pp. ISBN: 0691004943, 9780691004945

  • [34] Van Buskirk J. 2000. The cost of an inducible defense in anuran larvae. Ecology 81(10): 2813–2821. DOI: 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2 http://dx.doi.org/10.2307/177343 [CrossRef]

  • [35] Van Buskirk J. 2001. Specific induced responses to different predator species in anuran larvae. J. Evol. Biol. 14: 482–489. DOI: 10.1046/j.1420-9101.2001.00282.x http://dx.doi.org/10.1046/j.1420-9101.2001.00282.x [CrossRef]

  • [36] Van Buskirk J. 2002. Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56(2): 361–370. PMID: 11926504

  • [37] Van Buskirk J., McCollum S.A. & Werner E.E. 1997. Natural selection for environmentally induced phenotypes in tadpoles. Evolution 51(6): 1983–1992. http://dx.doi.org/10.2307/2411018

  • [38] Van Buskirk J. & Relyea R.A. 1998. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65(3): 301–328. DOI: 10.1111/j.1095-8312.1998.tb01144.x http://dx.doi.org/10.1111/j.1095-8312.1998.tb01144.x [CrossRef]

  • [39] Wassersug R.J. 1989 Locomotion in amphibian larvae (or “Why aren’t tadpoles built like fishes?”). Amer. Zool. 29(1): 65–84. DOI: 10.1093/icb/29.1.65 [CrossRef]

  • [40] Werner E.E. 1986. Amphibian metamorphosis: growth rate, predation risk, and optimal size at transformation. Am. Nat. 128(3): 319–341. http://dx.doi.org/10.1086/284565

  • [41] Werner E.E. & McPeek M.A. 1994. Direct and indirect effect of predators on two anuran species along an environmental gradient. Ecology 75(5): 1368–1382. DOI: 10.2307/1937461 http://dx.doi.org/10.2307/1937461 [CrossRef]

  • [42] Wilbur H.M. 1997. Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78(8): 2279–2302. DOI: 10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2 http://dx.doi.org/10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2 [CrossRef]

  • [43] Williams J.D. & Gudynas E. 1987. Descripción de la larva de Elachistocleis bicolor (Valenciennes 1838) (Anura: Microhylidae). Amphibia-Reptilia 8(3): 225–229. DOI: 10.1163/156853887X00261 http://dx.doi.org/10.1163/156853887X00261 [CrossRef]

  • [44] Wojdak J.M. & Trexler D.C. 2010. The influence of temporally variable predation risk on indirect interactions in an aquatic food chain. Ecol. Res. 25(2): 327–335. DOI: 10.1007/s11284-009-0664-8 http://dx.doi.org/10.1007/s11284-009-0664-8 [Web of Science] [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Quirin Herzog and Christian Laforsch
BMC Biology, 2013, Volume 11, Number 1, Page 113

Comments (0)

Please log in or register to comment.