Jump to ContentJump to Main Navigation

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Schlattmann, Peter / Tate, Jillian R. / Tsongalis, Gregory J.

13 Issues per year

IMPACT FACTOR 2013: 2.955
Rank 5 out of 29 in category Medical Laboratory Technology in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.860
Source Normalized Impact per Paper (SNIP): 1.046



Structure, Function and Clinical Significance of Transferrin Receptors

Richard A. Feelders / Ellen P. A. Kuiper-Kramer / Henk G. van Eijk

Citation Information: Clinical Chemistry and Laboratory Medicine. Volume 37, Issue 1, Pages 1–10, ISSN (Print) 1434-6621, DOI: 10.1515/CCLM.1999.001, June 2005

Publication History

Published Online:


Iron plays an essential role in a spectrum of metabolic processes. Cellular iron uptake is facilitated by transferrin receptor (TfR)-mediated endocytosis. In recent years more insight has been obtained in TfR physiology and the regulation of cellular iron homeostasis. The synthesis of TfR and the iron storage protein ferritin is regulated reciprocally at the post-transcriptional level according to the cellular iron status. As a result of externalization of TfR during the endocytic cycle, a soluble form of TfR can be detected in serum. The serum TfR (sTfR) level is closely related to erythroid TfR turnover and the prime determinants of the sTfR concentration are cellular iron demands and erythroid proliferation rate. In the absence of a hyperplastic erythropoiesis the sTfR level is a sensitive parameter of early tissue iron deficiency. The entire spectrum of body iron status can be assessed by measurement of serum ferritin and sTfR levels, with ferritin as marker of tissue iron stores and sTfR as index of tissue iron needs. The sTfR may be a promising tool to detect iron deficiency in inflammatory states and in the anaemia of chronic disease as its concentration is, in contrast to ferritin levels, not influenced by the acute phase response. Determination of sTfR levels may also improve assessment of body iron stores during pregnancy and in neonates. Finally, the sTfR may be a useful parameter to monitor erythropoiesis in various clinical settings, for instance in the prediction of the haematological response to erythropoietin treatment. However, standardization of the sTfR assay, with definition of reference and pathological ranges, is necessary for the definitive introduction of the sTfR as major parameter of iron metabolism.

Comments (0)

Please log in or register to comment.