Jump to ContentJump to Main Navigation

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Schlattmann, Peter / Tate, Jillian R. / Tsongalis, Gregory J.

12 Issues per year


IMPACT FACTOR 2013: 2.955
Rank 5 out of 29 in category Medical Laboratory Technology in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.860
Source Normalized Impact per Paper (SNIP): 1.046

VolumeIssuePage

Issues

Sniffing out the Truth: Clinical Diagnosis Using the Electronic Nose

A.K. Pavlou / A.P.F. Turner

Citation Information: Clinical Chemistry and Laboratory Medicine. Volume 38, Issue 2, Pages 99–112, ISSN (Print) 1434-6621, DOI: 10.1515/CCLM.2000.016, June 2005

Publication History

Published Online:
2005-06-01

Abstract

Recently the use of smell in clinical diagnosis has been rediscovered due to major advances in odour sensing technology and artificial intelligence (AI). It was well known in the past that a number of infectious or metabolic diseases could liberate specific odours characteristic of the disease stage. Later chromatographic techniques identified an enormous number of volatiles in human clinical specimens that might serve as potential disease markers. “Artificial nose” technology has been employed in several areas of medical diagnosis, including rapid detection of tuberculosis (TB), Helicobacter pylori (HP) and urinary tract infections (UTI). Preliminary results have demonstrated the possibility of identifying and characterising microbial pathogens in clinical specimens. A hybrid intelligent model of four interdependent “tools”, odour generation “kits”, rapid volatile delivery and recovery systems, consistent low drift sensor performance and a hybrid intelligent system of parallel neural networks (NN) and expert systems, have been applied in gastric, pulmonary and urine diagnosis. Initial clinical tests have shown that it may be possible in the near future to use electronic nose technology not only for the rapid detection of diseases such as peptic ulceration, UTI, and TB but also for the continuous dynamic monitoring of disease stages. Major advances in information and gas sensor technology could enhance the diagnostic power of future bio-electronic noses and facilitate global surveillance models of disease control and management.

Comments (0)

Please log in or register to comment.