Jump to ContentJump to Main Navigation

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Editorial Board Member: Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Schlattmann, Peter / Tate, Jillian R. / Tsongalis, Gregory J.

13 Issues per year


IMPACT FACTOR 2013: 2.955
Rank 5 out of 29 in category Medical Laboratory Technology in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.860
Source Normalized Impact per Paper (SNIP): 1.046

VolumeIssuePage

Issues

Tryptophan Metabolites and Brain Disorders

Trevor W. Stone / Gillian M. Mackay / Caroline M. Forrest / Catherine J. Clark / L. Gail Darlington

Citation Information: Clinical Chemistry and Laboratory Medicine. Volume 41, Issue 7, Pages 852–859, ISSN (Print) 1434-6621, DOI: 10.1515/CCLM.2003.129, June 2005

Publication History

Published Online:
2005-06-01

Abstract

Tryptophan is metabolised primarily along the kynurenine pathway, of which two components are now known to have marked effects on neurons in the central nervous system. Quinolinic acid is an agonist at the population of glutamate receptors which are sensitive to N-methyl-D-aspartate (NMDA), and kynurenic acid is an antagonist at several glutamate receptors. Consequently quinolinic acid can act as a neurotoxin while kynurenic acid is neuroprotectant. A third kynurenine, 3-hydroxykynurenine, can generate free radicals and contribute to, or exacerbate, neuronal damage. Changes in the absolute or relative concentrations of these kynurenines have been implicated in a variety of central nervous system disorders such as the AIDS-dementia complex and Huntington's disease, raising the possibility that interference with their actions or synthesis could lead to new forms of pharmacotherapy for these conditions.

Comments (0)

Please log in or register to comment.