Jump to ContentJump to Main Navigation

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Schlattmann, Peter / Tate, Jillian R. / Tsongalis, Gregory J.

12 Issues per year

IMPACT FACTOR 2013: 2.955
Rank 5 out of 29 in category Medical Laboratory Technology in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.860
Source Normalized Impact per Paper (SNIP): 1.046



Influence of short-term venous stasis on clinical chemistry testing

Giuseppe Lippi1 / Gian Luca Salvagno2 / Martina Montagnana3 / Giorgio Brocco4 / Gian Cesare Guidi5






Corresponding author: Prof. Giuseppe Lippi, MD, Istituto di Chimica e Microscopia Clinica, Dipartimento di Scienze Morfologico-Biomediche, Università degli Studi di Verona, Ospedale Policlinico G.B. Rossi, Piazzale Scuro 10, 37134 Verona, Italy Phone: +39-045-8074516, Fax: +39-045-8201889,

Citation Information: Clinical Chemical Laboratory Medicine. Volume 43, Issue 8, Pages 869–875, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: 10.1515/CCLM.2005.146, August 2005

Publication History

April 7, 2005
May 16, 2005


Control and standardization of preanalytical variability is a critical factor for achieving accuracy and precision in laboratory testing. Although venous stasis from tourniquet placement during venepuncture should be minimized, as it has been claimed to account for spurious and significant variations for several analytes in plasma, there is controversy surrounding its real impact on laboratory testing. The aim of the present study was the investigation of the influence of short-term venous stasis on routine biochemical testing, by measuring the plasma concentration of 12 common analytes, including proteins, protein-bound substances, enzymes and electrolytes, in plasma specimens collected either without venous stasis or following the application of standardized external pressure of 60 mm Hg using a sphygmomanometer for 1 and 3 min. Although the overall correlation between measures was acceptable, the pattern of change was mostly dependent on the length of stasis, size and protein-binding characteristics of the analytes, achieving clinical significance for albumin, calcium and potassium after 1-min stasis, and alanine aminotransferase, albumin, calcium, chloride, total cholesterol, glucose and potassium after 3-min stasis. Statistically significant differences could be observed in seven (alanine aminotransferase, albumin, calcium, total cholesterol, creatine kinase, iron and potassium) and ten (alanine aminotransferase, albumin, calcium, chloride, total cholesterol, creatine kinase, creatinine, glucose, iron and potassium) out of the 12 analytes tested, after 1- and 3-min venous stasis, respectively. The most clinically significant changes from standard venepuncture, when compared to the current analytical quality specifications for desirable bias, occurred for potassium (1-min stasis, −2.8%; 3-min stasis, −4.8%, both p<0.001), calcium (1-min stasis, +1.6%, p<0.05; 3-min stasis, +3.6%, p<0.001) and albumin (1-min stasis, +3.5%; 3-min stasis, +8.6%, both p<0.001). As most of these effects are dependent on the stasis time during venepuncture and biochemical or physiological characteristics of the analyte, these variations could likely be anticipated, allowing the most appropriate preventive measures to be adopted.

Keywords: blood collection; laboratory testing; preanalytical variability; standardization tourniquet; venous stasis

Comments (0)

Please log in or register to comment.