Approximate analytical solutions for arbitrary l-state of the Hulthén potential with an improved approximation of the centrifugal term : Open Chemistry Jump to ContentJump to Main Navigation
Show Summary Details

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2015: 1.207
5-year IMPACT FACTOR: 1.272

SCImago Journal Rank (SJR) 2015: 0.346
Source Normalized Impact per Paper (SNIP) 2015: 0.841
Impact per Publication (IPP) 2015: 1.164

Open Access
Online
ISSN
2391-5420
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Approximate analytical solutions for arbitrary l-state of the Hulthén potential with an improved approximation of the centrifugal term

1Faculty of Chemistry, Adam Mickiewicz University, 60-780, Poznań, Poland

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Chemistry. Volume 9, Issue 4, Pages 737–742, ISSN (Online) 2391-5420, DOI: 10.2478/s11532-011-0050-6, June 2011

Publication History

Published Online:
2011-06-04

Abstract

An approximate analytical solution of the radial Schrödinger equation for the generalized Hulthén potential is obtained by applying an improved approximation of the centrifugal term. The bound state energy eigenvalues and the normalized eigenfunctions are given in terms of hypergeometric polynomials. The results for arbitrary quantum numbers n r and l with different values of the screening parameter δ are compared with those obtained by the numerical method, asymptotic iteration, the Nikiforov-Uvarov method, the exact quantization rule, and variational methods. The results obtained by the method proposed in this work are in a good agreement with those obtained by other approximate methods.

Keywords: Hulthén potential; Energy eigenvalues and eigenfunctions; Centrifugal term

  • [1] L. Hulthén, Ark. Mat. Astron. Fys. A 28, 5 (1942)

  • [2] L. Hulthén, Ark. Mat. Astron. Fys. B 29, 1 (1942)

  • [3] S. Flügge, Practical Quantum Mechanics (Springer-Verlag, Berlin Heidelberg, 1994)

  • [4] O.L. de Lange, Am. J. Phys. 59, 151 (1991) http://dx.doi.org/10.1119/1.16596 [CrossRef]

  • [5] M.R. Setare, E. Karimi, Int. J. Theor. Phys. 46, 1381 (2007) http://dx.doi.org/10.1007/s10773-006-9276-z [CrossRef]

  • [6] R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976) http://dx.doi.org/10.1103/PhysRevA.14.2363 [CrossRef]

  • [7] O. Bayrak, G. Kocak, I Boztosun, J. Phys. A: Math. Gen. 39, 11521 (2006) http://dx.doi.org/10.1088/0305-4470/39/37/012 [CrossRef]

  • [8] S.M. Ikhdair, R. Sever, J. Math. Chem. 42, 461 (2007) http://dx.doi.org/10.1007/s10910-006-9115-8 [CrossRef]

  • [9] W.C. Qiang, S.H. Dong, Phys. Lett. A 368, 13 (2007) http://dx.doi.org/10.1016/j.physleta.2007.03.057 [CrossRef]

  • [10] W.C. Qiang, Y. Gao, R.S. Zhou, Cent. Eur. J. Phys. 6, 356 (2008) http://dx.doi.org/10.2478/s11534-008-0041-1 [CrossRef]

  • [11] C.Y. Chen, F.L. Lu, D.-S. Sun, Cent. Eur. J. Phys. 6, 884 (2008) http://dx.doi.org/10.2478/s11534-008-0099-9 [CrossRef]

  • [12] C.S. Jia, J.Y. Liu, P.Q. Wang, Phys. Lett. A 372, 4779 (2008) http://dx.doi.org/10.1016/j.physleta.2008.05.030 [CrossRef]

  • [13] S.M. Ikhdair, Eur. Phys. J. A 39, 307 (2009) http://dx.doi.org/10.1140/epja/i2008-10715-2 [CrossRef]

  • [14] V.C. Aguilera-Navarro, E. Ley-Koo, S. Mateos-Cortes, Rev. Mex. Fis. 43, 413 (1998)

  • [15] S.M. Ikhdair, R. Sever, J. Math. Chem. 42, 461 (2006) http://dx.doi.org/10.1007/s10910-006-9115-8 [CrossRef]

  • [16] O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A: Math Gen. 39, 11521 (2006) http://dx.doi.org/10.1088/0305-4470/39/37/012 [CrossRef]

  • [17] B. Gönül, O. Özer, Y. Cançelik, M. Koçak, Phys. Lett. A 275, 238 (2000) http://dx.doi.org/10.1016/S0375-9601(00)00590-9 [CrossRef]

  • [18] A.Z. Tang, F.T. Chan, Phys. Rev. A 35, 911 (1987) http://dx.doi.org/10.1103/PhysRevA.35.911 [CrossRef]

  • [19] M. Badawi, N. Bessis, G. Bessis, J. Phys. B: Atom. Molec. Phys. 5, L157 (1972) http://dx.doi.org/10.1088/0022-3700/5/8/004 [CrossRef]

  • [20] J. Lu, Phys. Scr. 72, 349 (2005) http://dx.doi.org/10.1238/Physica.Regular.072a00349 [CrossRef]

  • [21] S.M. Ikhdair, R. Sever, Ann. Phys. 18, 189 (2009) http://dx.doi.org/10.1002/andp.200810349 [CrossRef]

  • [22] D. Schiöberg, Mol. Phys. 59, 1123 (1989) http://dx.doi.org/10.1080/00268978600102631 [CrossRef]

  • [23] S.M. Ikhdair, R. Sever, arXiv:0807.2085v1 (2008) [Web of Science]

  • [24] Y.P. Varshni, Phys. Rev. A 41, 4682 (1990) http://dx.doi.org/10.1103/PhysRevA.41.4682 [CrossRef]

  • [25] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972)

  • [26] G.F. Wei, Z.Z. Zhen, S.H. Dong, Cent. Eur. J. Phys. 7, 175 (2009) http://dx.doi.org/10.2478/s11534-008-0143-9 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
M.R. Pahlavani and S.A. Alavi
Communications in Theoretical Physics, 2012, Volume 58, Number 5, Page 739
[4]
M. R. PAHLAVANI and S. A. ALAVI
Modern Physics Letters A, 2012, Volume 27, Number 29, Page 1250167
[7]
Sameer M. Ikhdair
ISRN Mathematical Physics, 2012, Volume 2012, Page 1

Comments (0)

Please log in or register to comment.